Skip to main content
Log in

Advances in the Degradation of Emerging Contaminants by Persulfate Oxidation Technology

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The activation of persulfate has received considerable attention for its potential application in the removal of pollutants. In recent years, various technologies have been developed to catalyze its activity, which can be classified into two main methods: homogeneous and non-homogeneous activation. Homogeneous activation methods encompass thermal activation, photoactivation, ultrasonic activation, electrical activation, microwave activation, and transition metal ion activation. What is more, non-homogeneous activation methods include activation through metal-based nanomaterials, MOF material activation, single-atom catalysts, piezoelectric effect activation, and carbon activation. In this review, it presents a comprehensive overview about the advantages and disadvantages of these activation methods, as well as the main reaction mechanisms. Additionally, chemical identification methods such as quenching, chemical probes, and isotope techniques are discussed. Furthermore, the article explores two characterization methods, electron paramagnetic resonance, in situ Fourier transform infrared spectroscopy and Raman spectroscopy, and mass spectrometry, and their application in experimental studies. Finally, the current limitations of each technique and future research directions are discussed and prospected. This article aims to provide valuable insights into the various activation methods of persulfate and their applications in the field of environmental science and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced with permission from Elsevier

Fig. 4
Fig. 5

Reproduced with permission from Elsevier

Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

PFOA:

Perfluorooctanoic acid

PMS:

Peroxymonosulfate

PDS:

Peroxodisulfate

SMZ:

Sulfamethoxazole

SPS:

Sodium persulfate

PFAS:

Per- and polyfluoroalkyl substances

US:

Ultrasound

PS:

Persulfate

EPSs:

Extracellular polymers

UV:

Ultraviolet

PNT:

P-Nitrophenylmethane

FQs:

Fluoroquinolones

DFT:

Density functional theory

SMX:

Sulfamethoxazole

MW:

Microwave

PCP:

Pentachlorophenol

PAHs:

Polycyclic aromatic hydrocarbons

IPM:

Isopropylmethanol

NAP:

Naphthalene

ACT :

Acetaminophen

CFTS:

CuFeSnS

ATZ:

Atrazine

AO7:

Orange 7

OFX:

P-Oxofloxacin

RHB:

Rhodamine B

Nzvc:

Nano zero-valent copper

MOF:

Metal organic framework

BPB:

Butyl benzoate

SACs:

Single-atom catalysts

AOPs:

Advanced oxidation process

BTH:

Benzothiazole

PFRs:

Persistent free radicals

BPA:

Bisphenol A

MRSB:

Magnetic rape straw biochar

PCBs:

Polychlorinated biphenyls

TC:

Tetracycline

CNTs:

Carbon nanotubes

CBZ:

Carbamazepine

WMF:

Weak magnetic field

LMCT:

Ligand-to-metal charge transfer

DFC:

Diclofenac

IBP:

Ibuprofen

TBA:

Tert-butanol

EPR:

Electron paramagnetic resonance

CSIA:

Compound-specific isotope analysis

TEMPO:

Tetramethyl-1-piperidinyloxy

ROS:

Reactive oxygen species

FTIR:

Fourier Transform infrared spectroscopy

MS:

Mass spectrometry

FT-ICR-MS:

Fourier transform ion cyclotron resonance mass spectrometry

TCS:

Triclosan

G-ND:

Graphitized nanodiamond

SDZ:

Sulfadiazine

TOC:

Total organic carbon

References

  • Achola, L. A., Ghebrehiwet, A., Macharia, J., Kerns, P., He, J., Fee, J., Tinson, C., Shi, J., March, S., Jain, M., & Suib, S. L. (2020). Enhanced visible-light-assisted peroxymonosulfate activation on cobalt-doped mesoporous iron oxide for orange II degradation. Applied Catalysis B: Environmental, 263, 118332.

    Article  CAS  Google Scholar 

  • Ahn, Y.-Y., & Yun, E. (2019). Heterogeneous metals and metal-free carbon materials for oxidative degradation through persulfate activation: A review of heterogeneous catalytic activation of persulfate related to oxidation mechanism. Korean Journal of Chemical Engineering, 36(11), 1767–1779.

    Article  CAS  Google Scholar 

  • Ahn, Y.-Y., Bae, H., Kim, H.-I., Kim, S.-H., Kim, J.-H., Lee, S.-G., & Lee, J. (2019). Surface-loaded metal nanoparticles for peroxymonosulfate activation: Efficiency and mechanism reconnaissance. Applied Catalysis B: Environmental, 241, 561–569.

    Article  CAS  Google Scholar 

  • Aimer, Y., Benali, O., & Groenen Serrano, K. (2019). Study of the degradation of an organophosphorus pesticide using electrogenerated hydroxyl radicals or heat-activated persulfate. Separation and Purification Technology, 208, 27–33.

    Article  CAS  Google Scholar 

  • Battula, V. R., Jaryal, A., & Kailasam, K. (2019). Visible light-driven simultaneous H2 production by water splitting coupled with selective oxidation of HMF to DFF catalyzed by porous carbon nitride. Journal of Materials Chemistry A, 7(10), 5643–5649.

    Article  CAS  Google Scholar 

  • Bokare, A. D., & Choi, W. (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275, 121–135.

    Article  CAS  Google Scholar 

  • Bu, L., Ding, J., Zhu, N., Kong, M., Wu, Y., Shi, Z., Zhou, S., & Dionysiou, D. D. (2019). Unraveling different mechanisms of persulfate activation by graphite felt anode and cathode to destruct contaminants of emerging concern. Applied Catalysis B: Environmental, 253, 140–148.

    Article  CAS  Google Scholar 

  • Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals OH/O⋅− in Aqueous Solution. Journal of Physical and Chemical Reference Data, 17(2), 513–886.

    Article  CAS  Google Scholar 

  • Chen, L., Cai, T., Sun, W., Zuo, X., & Ding, D. (2017). Mesoporous bouquet-like Co3O4 nanostructure for the effective heterogeneous activation of peroxymonosulfate. Journal of the Taiwan Institute of Chemical Engineers, 80, 720–727.

    Article  CAS  Google Scholar 

  • Chen, C., Xu, L., Huo, J.-B., Gupta, K., & Fu, M.-L. (2020). Simultaneous removal of butylparaben and arsenite by MOF-derived porous carbon coated lanthanum oxide: Combination of persulfate activation and adsorption. Chemical Engineering Journal, 391, 123552.

    Article  CAS  Google Scholar 

  • Chen, F., Wu, X.-L., Yang, L., Chen, C., Lin, H., & Chen, J. (2020). Efficient degradation and mineralization of antibiotics via heterogeneous activation of peroxymonosulfate by using graphene supported single-atom Cu catalyst. Chemical Engineering Journal, 394, 124904.

    Article  CAS  Google Scholar 

  • Chen, P., Gou, Y., Ni, J., Liang, Y., Yang, B., Jia, F., & Song, S. (2020). Efficient Ofloxacin degradation with Co(II)-doped MoS2 nano-flowers as PMS activator under visible-light irradiation. Chemical Engineering Journal, 401, 125978.

    Article  CAS  Google Scholar 

  • Chen, S., Deng, J., Ye, C., Xu, C., Huai, L., Ling, X., Li, J., & Li, X. (2021). Degradation of p-arsanilic acid by pre-magnetized Fe0/persulfate system: Kinetics, mechanism, degradation pathways and DBPs formation during subsequent chlorination. Chemical Engineering Journal, 410, 128435.

    Article  CAS  Google Scholar 

  • Chen, L., Duan, J., Du, P., Sun, W., Lai, B., Liu, W. (2022). Accurate identification of radicals by in-situ electron paramagnetic resonance in ultraviolet-based homogenous advanced oxidation processes. Water Res, 118747.

  • Cheng, X., Guo, H., Zhang, Y., Wu, X., & Liu, Y. (2017). Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes. Water Research, 113, 80–88.

    Article  CAS  Google Scholar 

  • Chenju Liang, H.-W. S. (2009). Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Department of EnVironmental Engineering, 5558–5562.

  • Chu, L., Zhuan, R., Chen, D., Wang, J., & Shen, Y. (2019). Degradation of macrolide antibiotic erythromycin and reduction of antimicrobial activity using persulfate activated by gamma radiation in different water matrices. Chemical Engineering Journal, 361, 156–166.

    Article  CAS  Google Scholar 

  • Chu, C., Yang, J., Zhou, X., Huang, D., Qi, H., Weon, S., Li, J., Elimelech, M., Wang, A., & Kim, J. H. (2021). Cobalt single atoms on tetrapyridomacrocyclic support for efficient peroxymonosulfate activation. Environmental Science and Technology, 55(2), 1242–1250.

    Article  CAS  Google Scholar 

  • Dančová, P., Blejchař, T., Konvička, J., von der Heide, B., Malý, R., & Maier, M. (2018). High temperature modification of SNCR technology and its impact on NOx removal process. EPJ Web of Conferences, 180, 02009.

    Article  Google Scholar 

  • Davies, M. J. (2016). Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods. Methods, 109, 21–30.

    Article  CAS  Google Scholar 

  • Deng, J., Feng, S., Zhang, K., Li, J., Wang, H., Zhang, T., & Ma, X. (2017). Heterogeneous activation of peroxymonosulfate using ordered mesoporous Co3O4 for the degradation of chloramphenicol at neutral pH. Chemical Engineering Journal, 308, 505–515.

    Article  CAS  Google Scholar 

  • Diao, Z.-H., Xu, X.-R., Jiang, D., Kong, L.-J., Sun, Y.-X., Hu, Y.-X., Hao, Q.-W., & Chen, H. (2016). Bentonite-supported nanoscale zero-valent iron/persulfate system for the simultaneous removal of Cr(VI) and phenol from aqueous solutions. Chemical Engineering Journal, 302, 213–222.

    Article  CAS  Google Scholar 

  • Dong, H., Qiang, Z., Hu, J., & Sans, C. (2017). Accelerated degradation of iopamidol in iron activated persulfate systems: Roles of complexing agents. Chemical Engineering Journal, 316, 288–295.

    Article  CAS  Google Scholar 

  • Duan, X., Sun, H., Wang, Y., Kang, J., & Wang, S. (2014). N-doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation. ACS Catalysis, 5(2), 553–559.

    Article  Google Scholar 

  • Duan, X., Ao, Z., Sun, H., Zhou, L., Wang, G., & Wang, S. (2015). Insights into N-doping in single-walled carbon nanotubes for enhanced activation of superoxides: A mechanistic study. Chemical Communications (cambridge, England), 51(83), 15249–15252.

    Article  CAS  Google Scholar 

  • Duan, X., Sun, H., Shao, Z., & Wang, S. (2018). Nonradical reactions in environmental remediation processes: Uncertainty and challenges. Applied Catalysis B: Environmental, 224, 973–982.

    Article  CAS  Google Scholar 

  • Duan, X., Sun, H., & Wang, S. (2018). Metal-free carbocatalysis in advanced oxidation reactions. Accounts of Chemical Research, 51(3), 678–687.

    Article  CAS  Google Scholar 

  • Ekeoma, B. C., Ekeoma, L. N., Yusuf, M., Haruna, A., Ikeogu, C. K., Merican, Z. M. A., Kamyab, H., Pham, C. Q., Vo, D. N., & Chelliapan, S. (2023). Recent advances in the biocatalytic mitigation of emerging pollutants: A comprehensive review. Journal of Biotechnology, 369, 14–34.

    Article  CAS  Google Scholar 

  • Elsner, M., & Imfeld, G. (2016). Compound-specific isotope analysis (CSIA) of micropollutants in the environment—current developments and future challenges. Current Opinion in Biotechnology, 41, 60–72.

    Article  CAS  Google Scholar 

  • Fagan, W. P., Villamena, F. A., Zweier, J. L., & Weavers, L. K. (2022). In Situ EPR Spin Trapping and Competition Kinetics Demonstrate Temperature-Dependent Mechanisms of Synergistic Radical Production by Ultrasonically Activated Persulfate. Environmental Science and Technology, 56(6), 3729–3738.

    Article  CAS  Google Scholar 

  • Fang, G., Liu, C., Gao, J., Dionysiou, D. D., & Zhou, D. (2015). Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation. Environmental Science and Technology, 49(9), 5645–5653.

    Article  CAS  Google Scholar 

  • Fayyaz, A., Saravanakumar, K., Talukdar, K., Kim, Y., Yoon, Y., & Park, C. M. (2021). Catalytic oxidation of naproxen in cobalt spinel ferrite decorated Ti3C2Tx MXene activated persulfate system: Mechanisms and pathways. Chemical Engineering Journal, 407, 127842.

    Article  CAS  Google Scholar 

  • Fu, C., Yi, X., Liu, Y., & Zhou, H. (2020). Cu2+ activated persulfate for sulfamethazine degradation. Chemosphere, 257, 127294.

    Article  CAS  Google Scholar 

  • Furman, O. S., Teel, A. L., Ahmad, M., Merker, M. C., & Watts, R. J. (2011). Effect of basicity on persulfate reactivity. Journal of Environmental Engineering, 137(4), 241–247.

    Article  CAS  Google Scholar 

  • Gao, H., Chen, J., Zhang, Y., & Zhou, X. (2016). Sulfate radicals induced degradation of Triclosan in thermally activated persulfate system. Chemical Engineering Journal, 306, 522–530.

    Article  CAS  Google Scholar 

  • Gao, L., Guo, Y., Zhan, J., Yu, G., & Wang, Y. (2022). Assessment of the validity of the quenching method for evaluating the role of reactive species in pollutant abatement during the persulfate-based process. Water Research, 221, 118730.

    Article  CAS  Google Scholar 

  • Gligorovski, S., Strekowski, R., Barbati, S., & Vione, D. (2015). Environmental implications of hydroxyl radicals (·OH). Chemical Reviews, 115(24), 13051–13092.

    Article  CAS  Google Scholar 

  • Gu, Z., Chen, W., Li, Q., & Zhang, A. (2019). Kinetics study of dinitrodiazophenol industrial wastewater treatment by a microwave-coupled ferrous-activated persulfate process. Chemosphere, 215, 82–91.

    Article  CAS  Google Scholar 

  • Guan, R., Yuan, X., Wu, Z., Wang, H., Jiang, L., Zhang, J., Li, Y., Zeng, G., & Mo, D. (2018). Accelerated tetracycline degradation by persulfate activated with heterogeneous magnetic NixFe3−xO4 catalysts. Chemical Engineering Journal, 350, 573–584.

    Article  CAS  Google Scholar 

  • Guo, Y., Long, J., Huang, J., Yu, G., & Wang, Y. (2022). Can the commonly used quenching method really evaluate the role of reactive oxygen species in pollutant abatement during catalytic ozonation? Water Research, 215, 118275.

    Article  CAS  Google Scholar 

  • Hasani, K., Moradi, M., Mokhtari, S. A., Sadeghi, H., Dargahi, A., & Vosoughi, M. (2021). Degradation of basic violet 16 dye by electro-activated persulfate process from aqueous solutions and toxicity assessment using microorganisms: determination of by-products, reaction kinetic and optimization using Box-Behnken design. International Journal of Chemical Reactor Engineering, 19(3), 261–275.

    Article  CAS  Google Scholar 

  • Hu, P., & Long, M. (2016). Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications. Applied Catalysis B: Environmental, 181, 103–117.

    Article  CAS  Google Scholar 

  • Huang, H., Guo, T., Wang, K., Li, Y., & Zhang, G. (2021). Efficient activation of persulfate by a magnetic recyclable rape straw biochar catalyst for the degradation of tetracycline hydrochloride in water. Science of the Total Environment, 758, 143957.

    Article  CAS  Google Scholar 

  • Ike, I. A., Linden, K. G., Orbell, J. D., & Duke, M. (2018). Critical review of the science and sustainability of persulphate advanced oxidation processes. Chemical Engineering Journal, 338, 651–669.

    Article  CAS  Google Scholar 

  • Ioannidi, A., Arvaniti, O. S., Nika, M. C., Aalizadeh, R., Thomaidis, N. S., Mantzavinos, D., & Frontistis, Z. (2022). Removal of drug losartan in environmental aquatic matrices by heat-activated persulfate: kinetics, transformation products and synergistic effects. Chemosphere, 287(Pt 1), 131952.

    Article  CAS  Google Scholar 

  • Jamali, M. K., Kazi, T. G., Arain, M. B., Afridi, H. I., Jalbani, N., Kandhro, G. A., Shah, A. Q., & Baig, J. A. (2009). Speciation of heavy metals in untreated sewage sludge by using microwave assisted sequential extraction procedure. Journal of Hazardous Materials, 163(2–3), 1157–1164.

    Article  CAS  Google Scholar 

  • Jiang, N., Xu, H., Wang, L., Jiang, J., & Zhang, T. (2020). Nonradical oxidation of pollutants with single-atom-Fe(III)-activated persulfate: Fe(V) being the possible intermediate oxidant. Environmental Science and Technology, 54(21), 14057–14065.

    Article  CAS  Google Scholar 

  • Jiang, Z., Zhao, J., Li, C., Liao, Q., Xiao, R., & Yang, W. (2020). Strong synergistic effect of Co3O4 encapsulated in nitrogen-doped carbon nanotubes on the nonradical-dominated persulfate activation. Carbon, 158, 172–183.

    Article  CAS  Google Scholar 

  • Jing, B., Ao, Z., Zhao, W., Xu, Y., Chen, Z., & An, T. (2020). Evaluation procedure of photocatalysts for VOCs degradation from the view of density functional theory calculations: g-C3N4 dots/graphene as an example. Journal of Materials Chemistry A, 8(39), 20363–20372.

    Article  CAS  Google Scholar 

  • Jing, B., Li, J., Nie, C., Zhou, J., Li, D., Ao, Z. (2022). Flow line of density functional theory in heterogeneous persulfate-based advanced oxidation processes for pollutant degradation: a review. Critical Reviews in Environmental Science and Technology, 1–21.

  • Kan, H., Wang, T., Yu, J., Qu, G., Zhang, P., Jia, H., & Sun, H. (2021). Remediation of organophosphorus pesticide polluted soil using persulfate oxidation activated by microwave. Journal of Hazardous Materials, 401, 123361.

    Article  CAS  Google Scholar 

  • Kang, J., Duan, X., Zhou, L., Sun, H., Tadé, M. O., & Wang, S. (2016). Carbocatalytic activation of persulfate for removal of antibiotics in water solutions. Chemical Engineering Journal, 288, 399–405.

    Article  CAS  Google Scholar 

  • Kemmou, L., Frontistis, Z., Vakros, J., Manariotis, I. D., & Mantzavinos, D. (2018). Degradation of antibiotic sulfamethoxazole by biochar-activated persulfate: Factors affecting the activation and degradation processes. Catalysis Today, 313, 128–133.

    Article  CAS  Google Scholar 

  • Kermani, M., Farzadkia, M., Morovati, M., Taghavi, M., Fallahizadeh, S., Khaksefidi, R., & Norzaee, S. (2020). Degradation of furfural in aqueous solution using activated persulfate and peroxymonosulfate by ultrasound irradiation. Journal of Environmental Management, 266, 110616.

    Article  CAS  Google Scholar 

  • Kong, L., Fang, G., Chen, Y., Xie, M., Zhu, F., Ma, L., Zhou, D., & Zhan, J. (2019). Efficient activation of persulfate decomposition by Cu2FeSnS4 nanomaterial for bisphenol A degradation: Kinetics, performance and mechanism studies. Applied Catalysis B: Environmental, 253, 278–285.

    Article  CAS  Google Scholar 

  • Koumaki, E., Mamais, D., Noutsopoulos, C., Nika, M. C., Bletsou, A. A., Thomaidis, N. S., Eftaxias, A., & Stratogianni, G. (2015). Degradation of emerging contaminants from water under natural sunlight: The effect of season, pH, humic acids and nitrate and identification of photodegradation by-products. Chemosphere, 138, 675–681.

    Article  CAS  Google Scholar 

  • Lan, S., Chen, Y., Zeng, L., Ji, H., Liu, W., & Zhu, M. (2020). Piezo-activation of peroxymonosulfate for benzothiazole removal in water. Journal of Hazardous Materials, 393, 122448.

    Article  CAS  Google Scholar 

  • Laurenti, M., Garino, N., Canavese, G., Hernandez, S., & Cauda, V. (2020). Piezo- and photocatalytic activity of ferroelectric ZnO: Sb thin films for the efficient degradation of rhodamine-beta dye pollutant. ACS Applied Materials & Interfaces, 12(23), 25798–25808.

    Article  CAS  Google Scholar 

  • Lee, H., Kim, H. I., Weon, S., Choi, W., Hwang, Y. S., Seo, J., Lee, C., & Kim, J. H. (2016). Activation of persulfates by graphitized nanodiamonds for removal of organic compounds. Environmental Science and Technology, 50(18), 10134–10142.

    Article  CAS  Google Scholar 

  • Lee, J., von Gunten, U., & Kim, J. H. (2020). Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks. Environmental Science and Technology, 54(6), 3064–3081.

    Article  CAS  Google Scholar 

  • Lei, Y.-J., Tian, Y., Sobhani, Z., Naidu, R., & Fang, C. (2020). Synergistic degradation of PFAS in water and soil by dual-frequency ultrasonic activated persulfate. Chemical Engineering Journal, 388, 124215.

    Article  CAS  Google Scholar 

  • Li, J., Ren, Y., Ji, F., & Lai, B. (2017). Heterogeneous catalytic oxidation for the degradation of p -nitrophenol in aqueous solution by persulfate activated with CuFe2O4 magnetic nano-particles. Chemical Engineering Journal, 324, 63–73.

    Article  CAS  Google Scholar 

  • Li, X., Zhou, M., Pan, Y., & Xu, L. (2017). Pre-magnetized Fe0/persulfate for notably enhanced degradation and dechlorination of 2,4-dichlorophenol. Chemical Engineering Journal, 307, 1092–1104.

    Article  CAS  Google Scholar 

  • Li, F., Xie, Y., Wang, Y., Fan, X., Cai, Y., & Mei, Y. (2019). Improvement of dyes degradation using hydrofluoric acid modified biochar as persulfate activator. Environmental Pollutants and Bioavailability, 31(1), 32–37.

    Article  CAS  Google Scholar 

  • Li, W., Guo, H., Wang, C., Zhang, Y., Cheng, X., Wang, J., Yang, B., & Du, E. (2020a). ROS reevaluation for degradation of 4-chloro-3,5-dimethylphenol (PCMX) by UV and UV/persulfate processes in the water: Kinetics, mechanism, DFT studies and toxicity evolution. Chemical Engineering Journal, 390, 124610.

    Article  CAS  Google Scholar 

  • Li, Z., Shen, C., Liu, Y., Ma, C., Li, F., Yang, B., Huang, M., Wang, Z., Dong, L., & Wolfgang, S. (2020). Carbon nanotube filter functionalized with iron oxychloride for flow-through electro-Fenton. Applied Catalysis B: Environmental, 260, 118204.

    Article  CAS  Google Scholar 

  • Li, Z., Li, K., Ma, S., Dang, B., Li, Y., Fu, H., Du, J., & Meng, Q. (2021). Activation of peroxymonosulfate by iron-biochar composites: Comparison of nanoscale Fe with single-atom Fe. Journal of Colloid and Interface Science, 582(Pt B), 598–609.

    Article  CAS  Google Scholar 

  • Li, D., Ali, J., Shahzad, A., Abdelnasser Gendy, E., Nie, H., Jiang, W., Xiao, H., Chen, Z., & Wang, S. (2022). Persulfate coupled with Cu2+/LDH-MoS4: A novel process for the efficient atrazine abatement, mechanism and degradation pathway. Chemical Engineering Journal, 436, 134933.

    Article  CAS  Google Scholar 

  • Liang, C. J., & Su, H. W. (2009). Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Industrial and Engineering Chemistry Research, 48(11), 5558–5562.

    Article  CAS  Google Scholar 

  • Liang, C., Wang, Z. S., & Bruell, C. J. (2007). Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere, 66(1), 106–113.

    Article  CAS  Google Scholar 

  • Liang, P., Zhang, C., Duan, X., Sun, H., Liu, S., Tade, M. O., & Wang, S. (2017). An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: Formation mechanism and generation of singlet oxygen from peroxymonosulfate. Environmental Science: Nano, 4(2), 315–324.

    CAS  Google Scholar 

  • Liang, Z., Yan, C.-F., Rtimi, S., & Bandara, J. (2019). Piezoelectric materials for catalytic/photocatalytic removal of pollutants: Recent advances and outlook. Appl Catal B-Environ, 241, 256–269.

    Article  CAS  Google Scholar 

  • Lin, H., Wu, J., & Zhang, H. (2013). Degradation of bisphenol A in aqueous solution by a novel electro/Fe3+/peroxydisulfate process. Separation and Purification Technology, 117, 18–23.

    Article  CAS  Google Scholar 

  • Liu, Y., & Wang, Q. (2014). Removal of elemental mercury from flue gas by thermally activated ammonium persulfate in a bubble column reactor. Environmental Science and Technology, 48(20), 12181–12189.

    Article  CAS  Google Scholar 

  • Liu, Y., & Zhang, J. (2017). Removal of NO from flue gas using UV/S2O82− process in a novel photochemical impinging stream reactor. AIChE Journal, 63(7), 2968–2980.

    Article  CAS  Google Scholar 

  • Liu, Y., Guo, H., Zhang, Y., Cheng, X., Zhou, P., Zhang, G., Wang, J., Tang, P., Ke, T., & Li, W. (2018). Heterogeneous activation of persulfate for Rhodamine B degradation with 3D flower sphere-like BiOI/Fe3O4 microspheres under visible light irradiation. Separation and Purification Technology, 192, 88–98.

    Article  CAS  Google Scholar 

  • Liu, J., Jiang, S., Chen, D., Dai, G., Wei, D., & Shu, Y. (2020). Activation of persulfate with biochar for degradation of bisphenol A in soil. Chemical Engineering Journal, 381, 122637.

    Article  CAS  Google Scholar 

  • Liu, S., Jing, B., Nie, C., Ao, Z., Duan, X., Lai, B., Shao, Y., Wang, S., & An, T. (2021). Piezoelectric activation of peroxymonosulfate by MoS2 nanoflowers for the enhanced degradation of aqueous organic pollutants. Environmental Science: Nano, 8(3), 784–794.

    CAS  Google Scholar 

  • Lominchar, M. A., Santos, A., de Miguel, E., & Romero, A. (2018). Remediation of aged diesel contaminated soil by alkaline activated persulfate. Science of the Total Environment, 622–623, 41–48.

    Article  Google Scholar 

  • Luo, Y., Su, R., Yao, H., Zhang, A., Xiang, S., & Huang, L. (2021). Degradation of trimethoprim by sulfate radical-based advanced oxidation processes: Kinetics, mechanisms, and effects of natural water matrices. Environmental Science and Pollution Research International, 28(44), 62572–62582.

    Article  CAS  Google Scholar 

  • Lv, S.-W., Liu, J.-M., Zhao, N., Li, C.-Y., Yang, F.-E., Wang, Z.-H., & Wang, S. (2020). MOF-derived CoFe2O4/Fe2O3 embedded in g-C3N4 as high-efficient Z-scheme photocatalysts for enhanced degradation of emerging organic pollutants in the presence of persulfate. Separation and Purification Technology, 253, 117413.

    Article  CAS  Google Scholar 

  • Ma, Q., Nengzi, L.-C., Zhang, X., Zhao, Z., & Cheng, X. (2020). Enhanced activation of persulfate by AC@CoFe2O4 nanocomposites for effective removal of lomefloxacin. Separation and Purification Technology, 233, 115978.

    Article  CAS  Google Scholar 

  • Ma, Y., Feng, Y., Feng, Y., Liao, G., Sun, Y., & Ma, J. (2020). Characteristics and mechanisms of controlled-release KMnO4 for groundwater remediation: Experimental and modeling investigations. Water Research, 171, 115385.

    Article  CAS  Google Scholar 

  • Mehralipour, J., & Kermani, M. (2021). Ultrasonic coupling with electrical current to effective activation of persulfate for 2, 4 dichlorophenoxyacetic acid herbicide degradation: Modeling, synergistic effect, and a by-product study. Journal of Environmental Health Science and Engineering, 19(1), 625–639.

    Article  CAS  Google Scholar 

  • Min, N., Yao, J., Amde, M., Tang, C., Wu, L., Richnow, H. H., Chen, Y., Cui, Y., & Li, H. (2021). Compound specific isotope analysis to characterize degradation mechanisms of p-chloroaniline by persulfate at ambient temperature. Chemical Engineering Journal, 419, 129526.

    Article  CAS  Google Scholar 

  • Monteagudo, J. M., Durán, A., González, R., & Expósito, A. J. (2015). In situ chemical oxidation of carbamazepine solutions using persulfate simultaneously activated by heat energy, UV light, Fe2+ ions, and H2O2. Applied Catalysis b: Environmental, 176–177, 120–129.

    Article  Google Scholar 

  • Nardi, G., Manet, I., Monti, S., Miranda, M. A., & Lhiaubet-Vallet, V. (2014). Scope and limitations of the TEMPO/EPR method for singlet oxygen detection: The misleading role of electron transfer. Free Radical Biology & Medicine, 77, 64–70.

    Article  CAS  Google Scholar 

  • Nihemaiti, M., Miklos, D. B., Hubner, U., Linden, K. G., Drewes, J. E., & Croue, J. P. (2018). Removal of trace organic chemicals in wastewater effluent by UV/H2O2 and UV/PDS. Water Research, 145, 487–497.

    Article  CAS  Google Scholar 

  • Nijenhuis, I., & Richnow, H. H. (2016). Stable isotope fractionation concepts for characterizing biotransformation of organohalides. Current Opinion in Biotechnology, 41, 108–113.

    Article  CAS  Google Scholar 

  • Niu, X. Z., Moore, E. G., & Croue, J. P. (2018). Excited triplet state interactions of fluoroquinolone norfloxacin with natural organic matter: A laser spectroscopy study. Environmental Science and Technology, 52(18), 10426–10432.

    Article  CAS  Google Scholar 

  • Norzaee, S., Taghavi, M., Djahed, B., & Kord Mostafapour, F. (2018). Degradation of Penicillin G by heat activated persulfate in aqueous solution. Journal of Environmental Management, 215, 316–323.

    Article  CAS  Google Scholar 

  • O’Connor, D., Hou, D., Ok, Y. S., Song, Y., Sarmah, A. K., Li, X., & Tack, F. M. G. (2018). Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: A review. Journal of Controlled Release, 283, 200–213.

    Article  CAS  Google Scholar 

  • Othman, I., Hisham Zain, J., Abu Haija, M., & Banat, F. (2020). Catalytic activation of peroxymonosulfate using CeVO4 for phenol degradation: An insight into the reaction pathway. Applied Catalysis B: Environmental, 266, 118601.

    Article  CAS  Google Scholar 

  • Pan, Y., Zhou, M., Li, X., Xu, L., Tang, Z., Sheng, X., & Li, B. (2017). Highly efficient persulfate oxidation process activated with pre-magnetization Fe0. Chemical Engineering Journal, 318, 50–56.

    Article  CAS  Google Scholar 

  • Pan, X., Chen, J., Wu, N., Qi, Y., Xu, X., Ge, J., Wang, X., Li, C., Qu, R., Sharma, V. K., & Wang, Z. (2018). Degradation of aqueous 2,4,4’-Trihydroxybenzophenone by persulfate activated with nitrogen doped carbonaceous materials and the formation of dimer products. Water Research, 143, 176–187.

    Article  CAS  Google Scholar 

  • Pan, Y., Zhou, M., Zhang, Y., Cai, J., Li, B., & Sheng, X. (2018). Enhanced degradation of Rhodamine B by pre-magnetized Fe0/PS process: Parameters optimization, mechanism and interferences of ions. Separation and Purification Technology, 203, 66–74.

    Article  CAS  Google Scholar 

  • Peng, J., Lu, X., Jiang, X., Zhang, Y., Chen, Q., Lai, B., & Yao, G. (2018). Degradation of atrazine by persulfate activation with copper sulfide (CuS): Kinetics study, degradation pathways and mechanism. Chemical Engineering Journal, 354, 740–752.

    Article  CAS  Google Scholar 

  • Peng, W., Dong, Y., Fu, Y., Wang, L., Li, Q., Liu, Y., Fan, Q., & Wang, Z. (2021). Non-radical reactions in persulfate-based homogeneous degradation processes: A review. Chemical Engineering Journal, 421, 127818.

    Article  CAS  Google Scholar 

  • Pi, Z., Li, X., Wang, D., Xu, Q., Tao, Z., Huang, X., Yao, F., Wu, Y., He, L., & Yang, Q. (2019). Persulfate activation by oxidation biochar supported magnetite particles for tetracycline removal: Performance and degradation pathway. Journal of Cleaner Production, 235, 1103–1115.

    Article  CAS  Google Scholar 

  • Pu, M., Niu, J., Brusseau, M. L., Sun, Y., Zhou, C., Deng, S., & Wan, J. (2020). Ferrous metal-organic frameworks with strong electron-donating properties for persulfate activation to effectively degrade aqueous sulfamethoxazole. Chemical Engineering Journal, 394, 125044.

    Article  CAS  Google Scholar 

  • Qi, C., Liu, X., Zhao, W., Lin, C., Ma, J., Shi, W., Sun, Q., & Xiao, H. (2015). Degradation and dechlorination of pentachlorophenol by microwave-activated persulfate. Environmental Science and Pollution Research International, 22(6), 4670–4679.

    Article  CAS  Google Scholar 

  • Qi, Y., Qu, R., Liu, J., Chen, J., Al-Basher, G., Alsultan, N., Wang, Z., & Huo, Z. (2019). Oxidation of flumequine in aqueous solution by UV-activated peroxymonosulfate: Kinetics, water matrix effects, degradation products and reaction pathways. Chemosphere, 237, 124484.

    Article  CAS  Google Scholar 

  • Qian, L., Kopinke, F.-D., Scherzer, T., Griebel, J., & Georgi, A. (2022). Enhanced degradation of perfluorooctanoic acid by heat-activated persulfate in the presence of zeolites. Chemical Engineering Journal, 429, 132500.

    Article  CAS  Google Scholar 

  • Radjenovic, J., & Petrovic, M. (2017). Removal of sulfamethoxazole by electrochemically activated sulfate: Implications of chloride addition. Journal of Hazardous Materials, 333, 242–249.

    Article  CAS  Google Scholar 

  • Rajabi, S., Nasiri, A., & Hashemi, M. (2022). Enhanced activation of persulfate by CuCoFe2O4@MC/AC as a novel nanomagnetic heterogeneous catalyst with ultrasonic for metronidazole degradation. Chemosphere, 286(Pt 3), 131872.

    Article  CAS  Google Scholar 

  • Ren, X., Liu, Y., & Guo, W. (2020). Morphology and crystal facet-dependent activation mechanism of persulfate by V2O5 nanomaterials for organic pollutants degradation. Separation and Purification Technology, 253, 117501.

    Article  CAS  Google Scholar 

  • Ren, W., Huang, X., Wang, L., Liu, X., Zhou, Z., Wang, Y., Lin, C., He, M., & Ouyang, W. (2021). Degradation of simazine by heat-activated peroxydisulfate process: A coherent study on kinetics, radicals and models. Chemical Engineering Journal, 426, 131876.

    Article  CAS  Google Scholar 

  • Ren, W., Cheng, C., Shao, P., Luo, X., Zhang, H., Wang, S., & Duan, X. (2022). Origins of electron-transfer regime in persulfate-based nonradical oxidation processes. Environmental Science and Technology, 56(1), 78–97.

    Article  CAS  Google Scholar 

  • Rodriguez-Narvaez, O. M., Rajapaksha, R. D., Ranasinghe, M. I., Bai, X., Peralta-Hernandez, J. M., & Bandala, E. R. (2020). Peroxymonosulfate decomposition by homogeneous and heterogeneous Co: Kinetics and application for the degradation of acetaminophen. Journal of Environmental Sciences (China), 93, 30–40.

    Article  CAS  Google Scholar 

  • Senthilkumar, A., Ganeshbabu, M., Karuppiah Lazarus, J., Sevugarathinam, S., John, J., Ponnusamy, S. K., Velayudhaperumal Chellam, P., & Sillanpää, M. (2022). Thermal and radiation based catalytic activation of persulfate systems in the removal of micropollutants: A review. Industrial and Engineering Chemistry Research, 62(11), 4554–4572.

    Article  Google Scholar 

  • Shang, Y., Chen, C., Zhang, P., Yue, Q., Li, Y., Gao, B., & Xu, X. (2019a). Removal of sulfamethoxazole from water via activation of persulfate by Fe3C@NCNTs including mechanism of radical and nonradical process. Chemical Engineering Journal, 375, 122004.

    Article  CAS  Google Scholar 

  • Shang, W., Dong, Z., Li, M., Song, X., Zhang, M., Jiang, C., & Feiyun, S. (2019). Degradation of diatrizoate in water by Fe(II)-activated persulfate oxidation. Chemical Engineering Journal, 361, 1333–1344.

    Article  CAS  Google Scholar 

  • Shang, Y., Xu, X., Gao, B., Wang, S., & Duan, X. (2021). Single-atom catalysis in advanced oxidation processes for environmental remediation. Chemical Society Reviews, 50(8), 5281–5322.

    Article  CAS  Google Scholar 

  • Shao, P., Tian, J., Yang, F., Duan, X., Gao, S., Shi, W., Luo, X., Cui, F., Luo, S., & Wang, S. (2018). Identification and regulation of active sites on nanodiamonds: establishing a highly efficient catalytic system for oxidation of organic contaminants. Advanced Functional Materials, 28(13), 1705295.

    Article  Google Scholar 

  • Shen, Y. F., Tang, J., Nie, Z. H., Wang, Y. D., Ren, Y., & Zuo, L. (2009). Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Separation and Purification Technology, 68(3), 312–319.

    Article  CAS  Google Scholar 

  • Shi, Q., Zhang, M., Zhang, Z., Li, Y., Qu, Y., Liu, Z., Yang, J., Xie, M., & Han, W. (2020). Energy and separation optimization of photogenerated charge in BiVO4 quantum dots by piezo-potential for efficient gaseous pollutant degradation. Nano Energy, 69, 104448.

    Article  CAS  Google Scholar 

  • Silva, L. G. M., Moreira, F. C., Cechinel, M. A. P., Mazur, L. P., de Souza, A. A. U., Souza, S., Boaventura, R. A. R., & Vilar, V. J. P. (2020). Integration of Fenton’s reaction based processes and cation exchange processes in textile wastewater treatment as a strategy for water reuse. Journal of Environmental Management, 272, 111082.

    Article  CAS  Google Scholar 

  • Silveira, J. E., Garcia-Costa, A. L., Cardoso, T. O., Zazo, J. A., & Casas, J. A. (2017). Indirect decolorization of azo dye Disperse Blue 3 by electro-activated persulfate. Electrochimica Acta, 258, 927–932.

    Article  CAS  Google Scholar 

  • Song, H., Yan, L., Ma, J., Jiang, J., Cai, G., Zhang, W., Zhang, Z., Zhang, J., & Yang, T. (2017). Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: Efficiency, mechanism and influencing factors. Water Research, 116, 182–193.

    Article  CAS  Google Scholar 

  • Song, H., Yan, L., Jiang, J., Ma, J., Pang, S., Zhai, X., Zhang, W., & Li, D. (2018). Enhanced degradation of antibiotic sulfamethoxazole by electrochemical activation of PDS using carbon anodes. Chemical Engineering Journal, 344, 12–20.

    Article  CAS  Google Scholar 

  • Su, R., Chai, L., Tang, C., Li, B., & Yang, Z. (2018). Comparison of the degradation of molecular and ionic ibuprofen in a UV/H2O2 system. Water Science and Technology, 77(9), 2174–2183.

    Article  CAS  Google Scholar 

  • Su, R., Xie, C., Alhassan, S. I., Huang, S., Chen, R., Xiang, S., Wang, Z., & Huang, L. (2020). Oxygen reduction reaction in the field of water environment for application of nanomaterials. Nanomaterials, 10(9), 1719.

    Article  CAS  Google Scholar 

  • Su, R., Dai, X., Wang, H., Wang, Z., Li, Z., Chen, Y., Luo, Y., & Ouyang, D. (2022). Metronidazole degradation by UV and UV/H2O2 advanced oxidation processes: kinetics, mechanisms, and effects of natural water matrices. International Journal of Environmental Research and Public Health, 19(19), 12354.

    Article  CAS  Google Scholar 

  • Su, R., Zhang, H., Chen, F., Wang, Z., & Huang, L. (2022). Applications of single atom catalysts for environmental management. International Journal of Environmental Research and Public Health, 19(18), 11155.

    Article  Google Scholar 

  • Sun, H., Kwan, C., Suvorova, A., Ang, H. M., Tadé, M. O., & Wang, S. (2014). Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals. Applied Catalysis B: Environmental, 154–155, 134–141.

    Article  Google Scholar 

  • Sun, C., Chen, T., Huang, Q., Zhan, M., Li, X., & Yan, J. (2020). Activation of persulfate by CO2-activated biochar for improved phenolic pollutant degradation: Performance and mechanism. Chemical Engineering Journal, 380, 122519.

    Article  CAS  Google Scholar 

  • Sun, F., Chen, T., Liu, H., Zou, X., Zhai, P., Chu, Z., Shu, D., Wang, H., & Chen, D. (2021). The pH-dependent degradation of sulfadiazine using natural siderite activating PDS: The role of singlet oxygen. Science of the Total Environment, 784, 147117.

    Article  CAS  Google Scholar 

  • Tan, C., Fu, D., Gao, N., Qin, Q., Xu, Y., & Xiang, H. (2017). Kinetic degradation of chloramphenicol in water by UV/persulfate system. J Photoch Photobio A, 332, 406–412.

    Article  CAS  Google Scholar 

  • Tan, C., Jian, X., Wu, H., Sheng, T., Sun, K., & Gao, H. (2021). Kinetics degradation of phenacetin by solar activated persulfate system. Separation and Purification Technology, 256, 117851.

    Article  CAS  Google Scholar 

  • Tang, X., Hashmi, M. Z., Zeng, B., Yang, J., & Shen, C. (2015). Application of iron-activated persulfate oxidation for the degradation of PCBs in soil. Chemical Engineering Journal, 279, 673–680.

    Article  CAS  Google Scholar 

  • Tang, L., Liu, Y., Wang, J., Zeng, G., Deng, Y., Dong, H., Feng, H., Wang, J., & Peng, B. (2018). Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants: Electron transfer mechanism. Appl Catal B-Environ, 231, 1–10.

    Article  CAS  Google Scholar 

  • Tang, X., Yu, C., Lei, Y., Wang, Z., Wang, C., & Wang, J. (2022). A novel chitosan-urea encapsulated material for persulfate slow-release to degrade organic pollutants. Journal of Hazardous Materials, 426, 128083.

    Article  CAS  Google Scholar 

  • Tobajas, M., Belver, C., & Rodriguez, J. J. (2017). Degradation of emerging pollutants in water under solar irradiation using novel TiO 2 -ZnO/clay nanoarchitectures. Chemical Engineering Journal, 309, 596–606.

    Article  CAS  Google Scholar 

  • Tsitonaki, A., Petri, B., Crimi, M., MosbÆK, H., Siegrist, R. L., & Bjerg, P. L. (2010). In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review. Critical Reviews In Environmental Science and Technology, 40(1), 55–91.

    Article  CAS  Google Scholar 

  • Tuan, D. D., Hu, C., Kwon, E., Du, Y., & Lin, K.-Y.A. (2020). Coordination polymer-derived porous Co3O4 nanosheet as an effective catalyst for activating peroxymonosulfate to degrade sulfosalicylic acid. Applied Surface Science, 532, 147382.

    Article  CAS  Google Scholar 

  • Vogt, C., Dorer, C., Musat, F., & Richnow, H. H. (2016). Multi-element isotope fractionation concepts to characterize the biodegradation of hydrocarbons—from enzymes to the environment. Current Opinion in Biotechnology, 41, 90–98.

    Article  CAS  Google Scholar 

  • Wacławek, S., Lutze, H. V., Grübel, K., Padil, V. V. T., Černík, M., & Dionysiou, D. D. (2017). Chemistry of persulfates in water and wastewater treatment: A review. Chemical Engineering Journal, 330, 44–62.

    Article  Google Scholar 

  • Wacławek, S., Lutze, H. V., Sharma, V. K., Xiao, R., Dionysiou, D. D. (2022). Revisit the alkaline activation of peroxydisulfate and peroxymonosulfate. Current Opinion in Chemical Engineering, 37.

  • Wang, J., & Wang, S. (2018). Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chemical Engineering Journal, 334, 1502–1517.

    Article  CAS  Google Scholar 

  • Wang, S., & Wang, J. (2018). Degradation of carbamazepine by radiation-induced activation of peroxymonosulfate. Chemical Engineering Journal, 336, 595–601.

    Article  CAS  Google Scholar 

  • Wang, H., Cai, W.-W., Liu, W.-Z., Li, J.-Q., Wang, B., Yang, S.-C., & Wang, A.-J. (2018). Application of sulfate radicals from ultrasonic activation: Disintegration of extracellular polymeric substances for enhanced anaerobic fermentation of sulfate-containing waste-activated sludge. Chemical Engineering Journal, 352, 380–388.

    Article  CAS  Google Scholar 

  • Wang, H., Guo, W., Liu, B., Wu, Q., Luo, H., Zhao, Q., Si, Q., Sseguya, F., & Ren, N. (2019). Edge-nitrogenated biochar for efficient peroxydisulfate activation: An electron transfer mechanism. Water Research, 160, 405–414.

    Article  CAS  Google Scholar 

  • Wang, W., Zhao, P., Hu, Y., & Zan, R. (2020). Application of weak magnetic field coupling with zero-valent iron for remediation of groundwater and wastewater: A review. Journal of Cleaner Production, 262, 121341.

    Article  CAS  Google Scholar 

  • Wang, G., Wang, P., Liu, H., Wang, J., Dai, X., & Xin, Y. (2021a). Degradation of spiramycin by thermally activated peroxydisulfate: Kinetics study, oxidation products and acute toxicity. Chemical Engineering Journal, 408, 127255.

    Article  CAS  Google Scholar 

  • Wang, X., Yunping, T., & Fang, G. (2021). Advances of single-atom catalysts for applications in persulfate-based advanced oxidation technologies. Current Opinion in Chemical Engineering, 34, 100757.

    Article  Google Scholar 

  • Wang, L., Lan, X., Peng, W., & Wang, Z. (2021). Uncertainty and misinterpretation over identification, quantification and transformation of reactive species generated in catalytic oxidation processes: A review. Journal of Hazardous Materials, 408, 124436.

    Article  CAS  Google Scholar 

  • Wang, A., Zhou, P., Tian, D., Zhang, H., Xiong, Z., Du, Y., He, C., Yuan, Y., Chen, T., Liu, Y., & Lai, B. (2022). Enhanced oxidation of fluoroquinolones by visible light-induced peroxydisulfate: The significance of excited triplet state species. Appl Catal B-Environ, 316, 121631.

    Article  CAS  Google Scholar 

  • Watts, R. J., Ahmad, M., Hohner, A. K., & Teel, A. L. (2018). Persulfate activation by glucose for in situ chemical oxidation. Water Research, 133, 247–254.

    Article  CAS  Google Scholar 

  • Wordofa, D. N., Walker, S. L., & Liu, H. (2017). Sulfate radical-induced disinfection of pathogenic Escherichia coli O157:H7 via iron-activated persulfate. Environmental Science & Technology Letters, 4(4), 154–160.

    Article  CAS  Google Scholar 

  • Wu, B., Xiong, Y., Ru, J., & Feng, H. (2016). Removal of NO from flue gas using heat-activated ammonium persulfate aqueous solution in a bubbling reactor. RSC Advances, 6(40), 33919–33930.

    Article  CAS  Google Scholar 

  • Wu, J. M., Sun, Y.-G., Chang, W.-E., & Lee, J.-T. (2018). Piezoelectricity induced water splitting and formation of hydroxyl radical from active edge sites of MoS2 nanoflowers. Nano Energy, 46, 372–382.

    Article  CAS  Google Scholar 

  • Wu, Y., Guo, J., Han, Y., Zhu, J., Zhou, L., & Lan, Y. (2018). Insights into the mechanism of persulfate activated by rice straw biochar for the degradation of aniline. Chemosphere, 200, 373–379.

    Article  CAS  Google Scholar 

  • Wu, L., Zhang, Q., Hong, J., Dong, Z., & Wang, J. (2019). Degradation of bisphenol A by persulfate activation via oxygen vacancy-rich CoFe2O4-x. Chemosphere, 221, 412–422.

    Article  CAS  Google Scholar 

  • Wu, L., Sun, Z., Zhen, Y., Zhu, S., Yang, C., Lu, J., Tian, Y., Zhong, D., & Ma, J. (2021). Oxygen vacancy-induced nonradical degradation of organics: Critical trigger of oxygen (O2) in the Fe-Co LDH/peroxymonosulfate system. Environmental Science and Technology, 55(22), 15400–15411.

    Article  CAS  Google Scholar 

  • Wu, D., Kan, H., Zhang, Y., Wang, T., Qu, G., Zhang, P., Jia, H., & Sun, H. (2022). Pyrene contaminated soil remediation using microwave/magnetite activated persulfate oxidation. Chemosphere, 286(Pt 2), 131787.

    Article  CAS  Google Scholar 

  • Wu, J., Xuan, X., Zhang, S., Li, Z., Li, H., Zhao, B., Ye, H., Xiao, Z., Zhao, X., Xu, X., Liu, X., You, J., Yamauchi, Y. (2023). N, P-doped carbon nanorings for high-performance capacitive deionization. Chemical Engineering Journal, 473.

  • Xia, T., Lin, Y., Li, W., & Ju, M. (2021). Photocatalytic degradation of organic pollutants by MOFs based materials: A review. Chinese Chemical Letters, 32(10), 2975–2984.

    Article  CAS  Google Scholar 

  • Xiao, R. Y., He, Z., Diaz-Rivera, D., Pee, G. Y., & Weavers, L. K. (2014). Sonochemical degradation of ciprofloxacin and ibuprofen in the presence of matrix organic compounds. Ultrasonics Sonochemistry, 21(1), 428–435.

    Article  CAS  Google Scholar 

  • Xie, H., & Xu, W. (2019). Enhanced activation of persulfate by Meso-CoFe2O4/SiO2 with ultrasonic treatment for degradation of chlorpyrifos. ACS Omega, 4(17), 17177–17185.

    Article  CAS  Google Scholar 

  • Xiong, X., Sun, B., Zhang, J., Gao, N., Shen, J., Li, J., & Guan, X. (2014). Activating persulfate by Fe0 coupling with weak magnetic field: Performance and mechanism. Water Research, 62, 53–62.

    Article  CAS  Google Scholar 

  • Xu, H., Zhang, Y., Li, J., Hao, Q., Li, X., & Liu, F. (2020). Heterogeneous activation of peroxymonosulfate by a biochar-supported Co3O4 composite for efficient degradation of chloramphenicols. Environmental Pollution, 257, 113610.

    Article  CAS  Google Scholar 

  • Yan, D. Y., & Lo, I. M. (2013). Removal effectiveness and mechanisms of naphthalene and heavy metals from artificially contaminated soil by iron chelate-activated persulfate. Environmental Pollution, 178, 15–22.

    Article  CAS  Google Scholar 

  • Yan, J., Chen, Y., Qian, L., Gao, W., Ouyang, D., & Chen, M. (2017). Heterogeneously catalyzed persulfate with a CuMgFe layered double hydroxide for the degradation of ethylbenzene. Journal of Hazardous Materials, 338, 372–380.

    Article  CAS  Google Scholar 

  • Yang, L., Xue, J., He, L., Wu, L., Ma, Y., Chen, H., Li, H., Peng, P., & Zhang, Z. (2019a). Review on ultrasound assisted persulfate degradation of organic contaminants in wastewater: Influences, mechanisms and prospective. Chemical Engineering Journal, 378, 122146.

    Article  CAS  Google Scholar 

  • Yang, L., Bai, X., Shi, J., Du, X., Xu, L., & Jin, P. (2019). Quasi-full-visible-light absorption by D35-TiO2/g-C3N4 for synergistic persulfate activation towards efficient photodegradation of micropollutants. Applied Catalysis B: Environmental, 256, 117759.

    Article  CAS  Google Scholar 

  • Yang, Y., Li, X., Zhou, C., Xiong, W., Zeng, G., Huang, D., Zhang, C., Wang, W., Song, B., Tang, X., Li, X., & Guo, H. (2020). Recent advances in application of graphitic carbon nitride-based catalysts for degrading organic contaminants in water through advanced oxidation processes beyond photocatalysis: A critical review. Water Research, 184, 116200.

    Article  CAS  Google Scholar 

  • Yang, C., Zhu, Y., Chen, J., Wu, T., Wang, J., Zhao, X., Sun, W., Lin, H., & Lv, S. (2022). Graphene/Fe@N-doped carbon hybrid derived from spent MOF adsorbent as efficient persulfate activator for degradation of tetracycline hydrochloride. Chemical Engineering Journal, 431, 133443.

    Article  CAS  Google Scholar 

  • Yin, R., Jing, B., He, S., Hu, J., Lu, G., Ao, Z., Wang, C., & Zhu, M. (2021). Near-infrared light to heat conversion in peroxydisulfate activation with MoS2: A new photo-activation process for water treatment. Water Research, 190, 116720.

    Article  CAS  Google Scholar 

  • Yun, W.-C., Lin, K.-Y.A., Tong, W.-C., Lin, Y.-F., & Du, Y. (2019). Enhanced degradation of paracetamol in water using sulfate radical-based advanced oxidation processes catalyzed by 3-dimensional Co3O4 nanoflower. Chemical Engineering Journal, 373, 1329–1337.

    Article  CAS  Google Scholar 

  • Zeng, G., Yang, R., Fu, X., Zhou, Z., Xu, Z., Zhou, Z., Qiu, Z., Sui, Q., & Lyu, S. (2021). Naphthalene degradation in aqueous solution by Fe(II) activated persulfate coupled with citric acid. Separation and Purification Technology, 264, 118441.

    Article  CAS  Google Scholar 

  • Zhang, Y., Geissen, S. U., & Gal, C. (2008). Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere, 73(8), 1151–1161.

    Article  CAS  Google Scholar 

  • Zhang, T., Chen, Y., Wang, Y., Le Roux, J., Yang, Y., & Croue, J. P. (2014). Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation. Environmental Science and Technology, 48(10), 5868–5875.

    Article  CAS  Google Scholar 

  • Zhang, L., Ding, W., Qiu, J., Jin, H., Ma, H., Li, Z., & Cang, D. (2018). Modeling and optimization study on sulfamethoxazole degradation by electrochemically activated persulfate process. Journal of Cleaner Production, 197, 297–305.

    Article  CAS  Google Scholar 

  • Zhang, P., Liao, Q., Yao, H., Huang, Y., Cheng, H., & Qu, L. (2019). Direct solar steam generation system for clean water production. Energy Storage Materials, 18, 429–446.

    Article  Google Scholar 

  • Zhang, X., Yao, J., Zhao, Z., & Liu, J. (2019). Degradation of haloacetonitriles with UV/peroxymonosulfate process: Degradation pathway and the role of hydroxyl radicals. Chemical Engineering Journal, 364, 1–10.

    Article  CAS  Google Scholar 

  • Zhang, H., Nengzi, L.-C., Liu, Y., Gao, Y., & Cheng, X. (2020a). Efficient removal of organic pollutant by activation of persulfate with magnetic Co3O4/CoFe2O4 composite. Arabian Journal of Chemistry, 13(5), 5332–5344.

    Article  CAS  Google Scholar 

  • Zhang, N., Tsang, E. P., Chen, J., Fang, Z., & Zhao, D. (2020). Critical role of oxygen vacancies in heterogeneous Fenton oxidation over ceria-based catalysts. Journal of Colloid and Interface Science, 558, 163–172.

    Article  Google Scholar 

  • Zhang, T., Yang, Y., Li, X., Yu, H., Wang, N., Li, H., Du, P., Jiang, Y., Fan, X., & Zhou, Z. (2020). Degradation of sulfamethazine by persulfate activated with nanosized zero-valent copper in combination with ultrasonic irradiation. Separation and Purification Technology, 239, 116537.

    Article  CAS  Google Scholar 

  • Zhang, B., Wang, X., Fang, Z., Wang, S., Shan, C., Wei, S., & Pan, B. (2021a). Unravelling molecular transformation of dissolved effluent organic matter in UV/H2O2, UV/persulfate, and UV/chlorine processes based on FT-ICR-MS analysis. Water Research, 199, 117158.

    Article  CAS  Google Scholar 

  • Zhang, P., Yang, Y., Duan, X., Liu, Y., & Wang, S. (2021). Density functional theory calculations for insight into the heterocatalyst reactivity and mechanism in persulfate-based advanced oxidation reactions. ACS Catalysis, 11(17), 11129–11159.

    Article  CAS  Google Scholar 

  • Zhang, Y., Wei, J., Xing, L., Li, J., Xu, M., Pan, G., & Li, J. (2022). Superoxide radical mediated persulfate activation by nitrogen doped bimetallic MOF (FeCo/N-MOF) for efficient tetracycline degradation. Separation and Purification Technology, 282, 120124.

    Article  CAS  Google Scholar 

  • Zhao, C., Zhong, S., Li, C., Zhou, H., & Zhang, S. (2020). Property and mechanism of phenol degradation by biochar activated persulfate. Journal of Materials Research and Technology, 9(1), 601–609.

    Article  CAS  Google Scholar 

  • Zhi, D., Lin, Y., Jiang, L., Zhou, Y., Huang, A., Yang, J., & Luo, L. (2020). Remediation of persistent organic pollutants in aqueous systems by electrochemical activation of persulfates: A review. Journal of Environmental Management, 260, 110125.

    Article  CAS  Google Scholar 

  • Zhou, Z., Liu, X., Sun, K., Lin, C., Ma, J., He, M., & Ouyang, W. (2019). Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review. Chemical Engineering Journal, 372, 836–851.

    Article  CAS  Google Scholar 

  • Zhou, J., Li, D., Zhao, W., Jing, B., Ao, Z., & An, T. (2021). First-principles evaluation of volatile organic compounds degradation in Z-scheme photocatalytic systems: MXene and Graphitic-CN heterostructures. ACS Applied Materials & Interfaces, 13(20), 23843–23852.

    Article  CAS  Google Scholar 

  • Zuo, B., Zuo, J., Chen, H., Deng, Q., Yamauchi, Y., Kim, J., Xu, X. (2023). Ion-imprinted magnetic adsorbents for the selective capture of Cu(II) and their cascade application as heterogeneous recyclable catalysts for Ullmann and Glaser coupling reactions. Chemical Engineering Journal, 471.

Download references

Funding

This research was funded by National Nature Science Foundation of China, grant number 52000183 and Major program Natural Science Foundation of Hunan Province of China, grant number 2021JC0001.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis: R.S., Z.L., and F.C.; writing—original draft preparation: R.S. and Z.L.; writing—review and editing: R.S., Y.L., and L.H.; supervision: Y.L., H.W., and X.D.; project administration: R.S. and Y.L. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Yiting Luo or Lei Huang.

Ethics declarations

Ethics Approval

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, R., Li, Z., Cheng, F. et al. Advances in the Degradation of Emerging Contaminants by Persulfate Oxidation Technology. Water Air Soil Pollut 234, 754 (2023). https://doi.org/10.1007/s11270-023-06770-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06770-2

Keywords

Navigation