Skip to main content
Log in

Cyanide Mitigation at Steel Metallurgical Process’s Effluent

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Cyanide is the main organic pollutant obtained in the water bodies of steel manufacturing plants. Cyanide generation takes place during the pyrolysis of coal for coke formation. Organic compounds such as cyanide, ammonia, phenol, and others are found in bodies of water after the coke oven gas is quenched. Highly hazardous nature and fatality of cyanide demand its effective remediation, with environmental norms stating (< 0.2 ppm cyanide) must be fulfilled before its release. The objective of the review is to include all the studies till date and the discomfort associated with the techniques. The study emphasizes on both primitive and advanced scientific techniques employed around the globe for cyanide remediation. Advanced techniques are also accompanied with challenges such as in case of strong oxidants; the storage and handling of explosive oxidants can be of concern. Strong oxidants, such as ozone, hydrogen peroxide, or hypochlorite, are extremely effective, but they significantly increase chemical demand. Strong oxidants like H2O2 were found to be very explosive in nature, hence limit their uses. Greener bioremediation alternatives are available, but their longer reaction times are their main detriment. Because of their high effectiveness even in the absence of any chemical requirement, photocatalysts and their actions are intensely studied. Efficiency and economics being the primary parameter, this paper focuses on the sustainability and recovery of catalyst reagents. Alongside, how large-scale industries can utilize designated techniques for higher yield and economic benefits is also retrospected here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

WWTP:

Wastewater treatment plant

PAHs:

Polycyclic aromatic hydrocarbons

WAD:

Weak-acid dissociable

SAD:

Strong-acid dissociable

AC:

Activated carbon

BAF:

Biological aerated filters

AOP:

Advanced oxidation process

GO:

Graphene oxide

GAC:

Granular activated carbon

SBBR:

Sequencing batch biofilm reactor

EPA:

Environmental Protection Agency

FCC:

Fluid catalytic cracking

EMSTM:

The engineered membrane separation treatment method

COD:

Chemical oxygen demand

DLHF:

Dual layer hollow fibre

References

  • Aazam, E. (2014). Environmental remediation of cyanide solutions by photocatalytic oxidation using Au/CdS nanoparticles. Journal of Industrial and Engineering Chemistry, 20, 2870–2875.

    Article  CAS  Google Scholar 

  • Acheampong, M. A., Meulepas, R. J., & Lens, P. N. (2010). Removal of heavy metals and cyanide from gold mine wastewater. Journal of Chemical Technology & Biotechnology, 85, 590–613.

    Article  CAS  Google Scholar 

  • Adams, M., & Lloyd, V. (2008). Cyanide recovery by tailings washing and pond stripping. Minerals Engineering, 21, 501–508.

    Article  CAS  Google Scholar 

  • Adhoum, N., & Monser, L. (2002). Removal of cyanide from aqueous solution using impregnated activated carbon. Chemical Engineering and Processing: Process Intensification, 41, 17–21.

    Article  CAS  Google Scholar 

  • Aguado, J., Van Grieken, R., Lopez-Munoz, M., & Marugán, J. (2002). Removal of cyanides in wastewater by supported TiO2-based photocatalysts. Catalysis Today, 75, 95–102.

    Article  CAS  Google Scholar 

  • Ahmed, M., Mavukkandy, M. O., Giwa, A., Elektorowicz, M., Katsou, E., Khelifi, O., Naddeo, V., & Hasan, S. W. (2022). Recent developments in hazardous pollutants removal from wastewater and water reuse within a circular economy. NPJ Clean Water, 5, 12.

    Article  CAS  Google Scholar 

  • Akcil, A. (2003). Destruction of cyanide in gold mill effluents: Biological versus chemical treatments. Biotechnology Advances, 21, 501–511.

    Article  CAS  Google Scholar 

  • Albarelli, J. Q., Santos, D. T., Murphy, S., & Oelgemöller, M. (2009). Use of Ca-alginate as a novel support for TiO2 immobilization in methylene blue decolorisation. Water Science and Technology, 60, 1081–1087.

    Article  CAS  Google Scholar 

  • Alexander, J. T., Hai, F. I., & Al-aboud, T. M. (2012). Chemical coagulation-based processes for trace organic contaminant removal: Current state and future potential. Journal of Environmental Management, 111, 195–207.

    Article  CAS  Google Scholar 

  • Alguacil, F. J. (2006), 'The Chemistry of Gold Extraction (2nd edn), John, O., Marsden, C., Iain House SME', Gold Bulletin 39, 138–138.

  • Alonso-González, O., Nava-Alonso, F., & Uribe-Salas, A. (2009). Copper removal from cyanide solutions by acidification. Minerals Engineering, 22, 324–329.

    Article  Google Scholar 

  • Alonso-González, O., Nava-Alonso, F., Uribe-Salas, A., & Dreisinger, D. (2010). Use of quaternary ammonium salts to remove copper–cyanide complexes by solvent extraction. Minerals Engineering, 23, 765–770.

    Article  Google Scholar 

  • Alvillo-Rivera, A., Garrido-Hoyos, S., Buitrón, G., Thangarasu-Sarasvathi, P., & Rosano-Ortega, G. (2021). Biological treatment for the degradation of cyanide: A review. Journal of Materials Research and Technology, 12, 1418–1433.

    Article  CAS  Google Scholar 

  • Arellano, C. A. P., & Martínez, S. S. (2007). Indirect electrochemical oxidation of cyanide by hydrogen peroxide generated at a carbon cathode. International Journal of Hydrogen Energy, 32, 3163–3169.

    Article  Google Scholar 

  • Babuponnusami, A., & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2, 557–572.

    Article  CAS  Google Scholar 

  • Bagabas, A., Alshammari, A., Aboud, M. F., & Kosslick, H. (2013). Room-temperature synthesis of zinc oxide nanoparticles in different media and their application in cyanide photodegradation. Nanoscale Research Letters, 8, 1–10.

    Article  Google Scholar 

  • Barakat, M., Chen, Y., & Huang, C. (2004). Removal of toxic cyanide and Cu (II) Ions from water by illuminated TiO2 catalyst. Applied Catalysis B: Environmental, 53, 13–20.

    Article  CAS  Google Scholar 

  • Betancourt-Buitrago, L. A., Hernandez-Ramirez, A., Colina-Marquez, J. A., Bustillo-Lecompte, C. F., Rehmann, L., & Machuca-Martinez, F. (2019). Recent developments in the photocatalytic treatment of cyanide wastewater: An approach to remediation and recovery of metals. Processes, 7, 225.

    Article  CAS  Google Scholar 

  • Bhattacharya, S., Das, A. A., Dhal, G. C., Sahoo, P. K., Tripathi, A., & Sahoo, N. K. (2022). Evaluation of N doped rGO-ZnO-CoPc (COOH) 8 nanocomposite in cyanide degradation and its bactericidal activities. Journal of Environmental Management, 302, 114022.

    Article  CAS  Google Scholar 

  • Biswas, J. (2013). Evaluation of various method and efficiencies for treatment of effluent from iron and steel industry—A review. International Journal of Mechanical Engineering and Robotics Research, 2, 67–73.

    Google Scholar 

  • Biswas, P., Bhunia, P., Saha, P., Sarkar, S., Chandel, H., & De, S. (2020). In situ photodecyanation of steel industry wastewater in a pilot scale. Environmental Science and Pollution Research, 27, 33226–33233.

    Article  CAS  Google Scholar 

  • Bodamer, G. W. (1977). Electrodialysis for closed loop control of cyanide rinse waters. U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C., EPA/600/2-77/161.

  • Bokare, A. D., & Choi, W. (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275, 121–135.

    Article  CAS  Google Scholar 

  • Botz, M., Dimitriadis, D., Polglase, T., Phillips, W., & Jenny, R. (2001). Processes for the regeneration of cyanide from thiocyanate. Mining, Metallurgy & Exploration, 18, 126–132.

    Article  CAS  Google Scholar 

  • Botz, M., Mudder, T., & Akcil, A. (2005). Cyanide treatment: Physical, chemical and biological processes. Advances in Gold Ore Processing, 4528, 672–702.

    Article  Google Scholar 

  • Botz, M. M.: (2001), 'Overview of cyanide treatment methods'. Mining Environmental Management, Mining Journal Ltd., London, UK, 28-30

  • Breuer, P., Jeffery, C., & Meakin, R. (2011). 'Fundamental investigations of the SO2/air, peroxide and Caro’s acid cyanide destruction processes by'. Proceedings of ALTA 2011 Gold Conference, ALTA Metallurgical Services Perth, 154–168.

  • Brillas, E., Sirés, I., & Oturan, M. A. (2009). Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chemical Reviews, 109, 6570–6631.

    Article  CAS  Google Scholar 

  • Byrne, J., Eggins, B., Brown, N., McKinney, B., & Rouse, M. (1998). Immobilisation of TiO2 powder for the treatment of polluted water. Applied Catalysis B: Environmental, 17, 25–36.

    Article  CAS  Google Scholar 

  • Cheng, S., Gattrell, M., Guena, T., & MacDougall, B. (2002). The electrochemical oxidation of alkaline copper cyanide solutions. Electrochimica Acta, 47, 3245–3256.

    Article  CAS  Google Scholar 

  • Chi, G., Fuerstenau, M. C., & Marsden, J. O. (1997). Study of Merrill-Crowe processing. Part I: Solubility of zinc in alkaline cyanide solution. International Journal of Mineral Processing, 49, 171–183.

    Article  CAS  Google Scholar 

  • Chiam, S.-L., Pung, S.-Y., & Yeoh, F.-Y. (2020). Recent developments in MnO2-based photocatalysts for organic dye removal: A review. Environmental Science and Pollution Research, 27, 5759–5778.

    Article  CAS  Google Scholar 

  • Chiang, K., Amal, R., & Tran, T. (2002). Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide. Advances in Environmental Research, 6, 471–485.

    Article  CAS  Google Scholar 

  • Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17, 145–155.

    Article  CAS  Google Scholar 

  • Cui, J., Wang, X., Yuan, Y., Guo, X., Gu, X., & Jian, L. (2014). Combined ozone oxidation and biological aerated filter processes for treatment of cyanide containing electroplating wastewater. Chemical Engineering Journal, 241, 184–189.

    Article  CAS  Google Scholar 

  • Dai, X., Simons, A., & Breuer, P. (2012). A review of copper cyanide recovery technologies for the cyanidation of copper containing gold ores. Minerals Engineering, 25, 1–13.

    Article  CAS  Google Scholar 

  • Daneshvar, N., Salari, D., Niaei, A., Rasoulifard, M., & Khataee, A. (2005). Immobilization of TiO2 nanopowder on glass beads for the photocatalytic decolorization of an azo dye CI Direct Red 23. Journal of Environmental Science and Health, Part A, 40, 1605–1617.

    Article  CAS  Google Scholar 

  • Das, P. P., Mondal, P., Sinha, A., Biswas, P., Sarkar, S., & Purkait, M. (2021a). Integrated ozonation assisted electrocoagulation process for the removal of cyanide from steel industry wastewater. Chemosphere, 263, 128370.

    Article  CAS  Google Scholar 

  • Das, P. P., Mondal, P., Sinha, A., Biswas, P., Sarkar, S., & Purkait, M. K. (2021b). Treatment of steel plant generated biological oxidation treated (BOT) wastewater by hybrid process. Separation and Purification Technology, 258, 118013.

    Article  CAS  Google Scholar 

  • Dash, R. R., Balomajumder, C., & Kumar, A. (2008). Treatment of metal cyanide bearing wastewater by simultaneous adsorption and biodegradation (SAB). Journal of Hazardous Materials, 152, 387–396.

    Article  CAS  Google Scholar 

  • Dash, R. R., Balomajumder, C., & Kumar, A. (2009a). Removal of cyanide from water and wastewater using granular activated carbon. Chemical Engineering Journal, 146, 408–413.

    Article  CAS  Google Scholar 

  • Dash, R. R., Gaur, A., & Balomajumder, C. (2009b). Cyanide in industrial wastewaters and its removal: A review on biotreatment. Journal of Hazardous Materials, 163, 1–11.

    Article  Google Scholar 

  • de Andrade, F. V., de Lima, G. M., Augusti, R., da Silva, J. C. C., Coelho, M. G., Paniago, R., & Machado, I. R. (2015). A novel TiO2/autoclaved cellular concrete composite: From a precast building material to a new floating photocatalyst for degradation of organic water contaminants. Journal of Water Process Engineering, 7, 27–35.

    Article  Google Scholar 

  • Depci, T. (2012). Comparison of activated carbon and iron impregnated activated carbon derived from Gölbaşı lignite to remove cyanide from water. Chemical Engineering Journal, 181, 467–478.

    Article  Google Scholar 

  • Deveci, H., Yazıcı, E., Alp, I., & Uslu, T. (2006). Removal of cyanide from aqueous solutions by plain and metal-impregnated granular activated carbons. International Journal of Mineral Processing, 79, 198–208.

    Article  CAS  Google Scholar 

  • Dhamo, N. (1996). Electrochemical oxidation of cyanide in the hydrocyclone cell. Waste Management, 16, 257–261.

    Article  CAS  Google Scholar 

  • Dubey, S., & Holmes, D. (1995). Biological cyanide destruction mediated by microorganisms. World Journal of Microbiology and Biotechnology, 11, 257–265.

    Article  CAS  Google Scholar 

  • Dzinun, H., Othman, M. H. D., Ismail, A., Puteh, M. H., Rahman, M. A., & Jaafar, J. (2015). Morphological study of co-extruded dual-layer hollow fiber membranes incorporated with different TiO2 loadings. Journal of Membrane Science, 479, 123–131.

    Article  CAS  Google Scholar 

  • Eskandari, P., Farhadian, M., Solaimany Nazar, A. R., & Jeon, B.-H. (2019). Adsorption and photodegradation efficiency of TiO2/Fe2O3/PAC and TiO2/Fe2O3/zeolite nanophotocatalysts for the removal of cyanide. Industrial & Engineering Chemistry Research, 58, 2099–2112.

    Article  CAS  Google Scholar 

  • Farrokhi, M., Yang, J.-K., Lee, S.-M., & Shirzad-Siboni, M. (2013). Effect of organic matter on cyanide removal by illuminated titanium dioxide or zinc oxide nanoparticles. Journal of Environmental Health Science and Engineering, 11, 1–8.

    Article  Google Scholar 

  • Felföldi, T., Nagymáté, Z., Székely, A. J., Jurecska, L., & Márialigeti, K. (2020). Biological treatment of coke plant effluents: From a microbiological perspective. Biologia Futura, 71, 359–370.

    Article  Google Scholar 

  • Fry, W. & Millar, R. (1972). Cyanide degradion by an enzyme from Stemphylium loti. Archives of biochemistry and biophysics, 151, 468–474.

  • Gar Alalm, M., Tawfik, A., & Ookawara, S. (2016). Enhancement of photocatalytic activity of TiO2 by immobilization on activated carbon for degradation of pharmaceuticals. Journal of Environmental Chemical Engineering, 4, 1929–1937.

    Article  CAS  Google Scholar 

  • García, V., Häyrynen, P., Landaburu-Aguirre, J., Pirilä, M., Keiski, R. L., & Urtiaga, A. (2014). Purification techniques for the recovery of valuable compounds from acid mine drainage and cyanide tailings: Application of green engineering principles. Journal of Chemical Technology & Biotechnology, 89, 803–813.

    Article  Google Scholar 

  • Golbaz, S., Jafari, A. J., Rafiee, M., & Kalantary, R. R. (2014). Separate and simultaneous removal of phenol, chromium, and cyanide from aqueous solution by coagulation/precipitation: Mechanisms and theory. Chemical Engineering Journal, 253, 251–257.

    Article  CAS  Google Scholar 

  • Gönen, N., Kabasakal, O., & Özdil, G. (2004). Recovery of cyanide in gold leach waste solution by volatilization and absorption. Journal of Hazardous Materials, 113, 231–236.

    Article  Google Scholar 

  • Grao, M., Ratova, M., Amorim, C. C., Marcelino, R. B., & Kelly, P. (2020). Crystalline TiO2 supported on stainless steel mesh deposited in a one step process via pulsed DC magnetron sputtering for wastewater treatment applications. Journal of Materials Research and Technology, 9, 5761–5773.

    Article  CAS  Google Scholar 

  • Han, B., Shen, Z., & Wickramasinghe, S. R. (2005). Cyanide removal from industrial wastewaters using gas membranes. Journal of Membrane Science, 257, 171–181.

    Article  CAS  Google Scholar 

  • Harraz, F. A., Abdel-Salam, O. E., Mostafa, A. A., Mohamed, R. M., & Hanafy, M. (2013). Rapid synthesis of titania–silica nanoparticles photocatalyst by a modified sol–gel method for cyanide degradation and heavy metals removal. Journal of Alloys and Compounds, 551, 1–7.

    Article  CAS  Google Scholar 

  • Harris, R. E., & Knowles, C. J. (1983). The conversion of cyanide to ammonia by extracts of a strain of Pseudomonas fluorescens that utilizes cyanide as a source of nitrogen for growth. FEMS Microbiology Letters, 20, 337–341.

    Article  CAS  Google Scholar 

  • Hassanzadeh Fard, Z., Malliakas, C. D., Mertz, J. L., & Kanatzidis, M. G. (2015). Direct extraction of Ag+ and Hg2+ from cyanide complexes and mode of binding by the layered K2MgSn2S6 (KMS-2). Chemistry of Materials, 27, 1925–1928.

    Article  CAS  Google Scholar 

  • Hidaka, H., Nakamura, T., Ishizaka, A., Tsuchiya, M., & Zhao, J. (1992). Heterogeneous photocatalytic degradation of cyanide on TiO2 surfaces. Journal of Photochemistry and Photobiology a: Chemistry, 66, 367–374.

    Article  CAS  Google Scholar 

  • Hosseini, S. N., Borghei, S. M., Vossoughi, M., & Taghavinia, N. (2007). Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol. Applied Catalysis B: Environmental, 74, 53–62.

    Article  CAS  Google Scholar 

  • Huertas, M., Sáez, L., Roldán, M., Luque-Almagro, V., Martínez-Luque, M., Blasco, R., Castillo, F., Moreno-Vivián, C., & García-García, I. (2010). Alkaline cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Influence of pH. Journal of Hazardous Materials, 179, 72–78.

    Article  CAS  Google Scholar 

  • Ismail, A., Ibrahim, I., Ahmed, M., Mohamed, R., & El-Shall, H. (2004). Sol–gel synthesis of titania–silica photocatalyst for cyanide photodegradation. Journal of Photochemistry and Photobiology a: Chemistry, 163, 445–451.

    Article  CAS  Google Scholar 

  • Jaszczak, E., Polkowska, Ż, Narkowicz, S., & Namieśnik, J. (2017). Cyanides in the environment—analysis—problems and challenges. Environmental Science and Pollution Research, 24, 15929–15948.

    Article  CAS  Google Scholar 

  • Jawale, R. H., Gogate, P. R., & Pandit, A. B. (2014). Treatment of cyanide containing wastewater using cavitation based approach. Ultrasonics Sonochemistry, 21, 1392–1399.

    Article  CAS  Google Scholar 

  • Jawale, R. H., Tandale, A., & Gogate, P. R. (2017). Novel approaches based on ultrasound for treatment of wastewater containing potassium ferrocyanide. Ultrasonics Sonochemistry, 38, 402–409.

    Article  CAS  Google Scholar 

  • Jiménez-Prieto, Y., Esperanza-Pérez, G., Ramírez-González, S., & Alomas-Vicente, I. D. L. C. (2020). Assessment of technological alternatives for cyanide waste waters management in gold ores processing plant. Revista Cubana de Química, 32, 218–231.

    Google Scholar 

  • Johnson, C. A. (2015). The fate of cyanide in leach wastes at gold mines: An environmental perspective. Applied Geochemistry, 57, 194–205.

    Article  CAS  Google Scholar 

  • Kadi, M. W., & Mohamed, R. (2013). Enhanced photocatalytic activity of ZrO2-SiO2 nanoparticles by platinum doping. International Journal of Photoenergy, 2013, 812097. https://doi.org/10.1155/2013/812097.

  • Karunakaran, C., & Senthilvelan, S. (2005). Photocatalysis with ZrO2: Oxidation of aniline. Journal of Molecular Catalysis A: Chemical, 233, 1–8.

    Article  CAS  Google Scholar 

  • Karunakaran, C., Gomathisankar, P., & Manikandan, G. (2010). Preparation and characterization of antimicrobial Ce-doped ZnO nanoparticles for photocatalytic detoxification of cyanide. Materials Chemistry and Physics, 123, 585–594.

    Article  CAS  Google Scholar 

  • Karunakaran, C., Rajeswari, V., & Gomathisankar, P. (2011). Enhanced photocatalytic and antibacterial activities of sol–gel synthesized ZnO and Ag-ZnO. Materials Science in Semiconductor Processing, 14, 133–138.

    Article  CAS  Google Scholar 

  • Kepa, U., Stanczyk-Mazanek, E., & Stepniak, L. (2008). The use of the advanced oxidation process in the ozone+ hydrogen peroxide system for the removal of cyanide from water. Desalination, 223, 187–193.

    Article  CAS  Google Scholar 

  • Kobayakawa, K., Sato, C., Sato, Y., & Fujishima, A. (1998). Continuous-flow photoreactor packed with titanium dioxide immobilized on large silica gel beads to decompose oxalic acid in excess water. Journal of Photochemistry and Photobiology A: Chemistry, 118, 65–69.

    Article  CAS  Google Scholar 

  • Koohestani, H., & Sadrnezhaad, S. K. (2016). Photocatalytic degradation of methyl orange and cyanide by using TiO2/CuO composite. Desalination and Water Treatment, 57, 22029–22038.

    Article  CAS  Google Scholar 

  • Kumar, M. S., Gopinath, A., Ranjith, N., Ummar, S., & Nidheesh, P. V. (2023). Treatment of integrated steel plant wastewater using conventional and advanced techniques. CLEAN–Soil, Air, Water, 51, 2100169.

    Article  CAS  Google Scholar 

  • Kunz, D. A., Nagappan, O., Silva-Avalos, J., & Delong, G. (1992). Utilization of cyanide as nitrogenous substrate by Pseudomonas fluorescens NCIMB 11764: Evidence for multiple pathways of metabolic conversion. Applied and Environmental Microbiology, 58, 2022–2029.

    Article  CAS  Google Scholar 

  • Kurama, H., & Çatalsarik, T. (2000). Removal of zinc cyanide from a leach solution by an anionic ion-exchange resin. Desalination, 129, 1–6.

    Article  CAS  Google Scholar 

  • Kuyucak, N., & Akcil, A. (2013). Cyanide and removal options from effluents in gold mining and metallurgical processes. Minerals Engineering, 50, 13–29.

    Article  Google Scholar 

  • Li, J., Zhang, S., Nie, Y., Ma, X., Xu, L., & Wu, L. (2020). A holistic life cycle evaluation of coking production covering coke oven gas purification process based on the subdivision method. Journal of Cleaner Production, 248, 119183.

    Article  CAS  Google Scholar 

  • Lintzos, L., Koumaki, E., Mendrinou, P., Chatzikonstantinou, K., Tzamtzis, N., & Malamis, S. (2020). Biological cyanide removal from industrial wastewater by applying membrane bioreactors. Journal of Chemical Technology & Biotechnology, 95, 3041–3050.

    Article  CAS  Google Scholar 

  • Lu, J., Dreisinger, D., & Cooper, W. (2002). Copper electrowinning from dilute cyanide solution in a membrane cell using graphite felt. Hydrometallurgy, 64, 1–11.

    Article  CAS  Google Scholar 

  • Luo, M., Liu, Y., Hu, J., Liu, H., & Li, J. (2012). One-pot synthesis of CdS and Ni-doped CdS hollow spheres with enhanced photocatalytic activity and durability. ACS Applied Materials & Interfaces, 4, 1813–1821.

    Article  CAS  Google Scholar 

  • Mamelkina, M. A., Herraiz-Carboné, M., Cotillas, S., Lacasa, E., Sáez, C., Tuunila, R., Sillanpää, M., Häkkinen, A., & Rodrigo, M. A. (2020). Treatment of mining wastewater polluted with cyanide by coagulation processes: A mechanistic study. Separation and Purification Technology, 237, 116345.

    Article  CAS  Google Scholar 

  • Maulana, I., & Takahashi, F. (2018). Cyanide removal study by raw and iron-modified synthetic zeolites in batch adsorption experiments. Journal of Water Process Engineering, 22, 80–86.

    Article  Google Scholar 

  • McNulty, K. J., & Hoover, P. R. (1980). Evaluation of reverse osmosis membranes for treatment of electroplating rinsewater. Environmental Protection Agency, Office of Research and Development, Industrial Environmental Research Laboratory, Springfield, Va.

  • Mishra, L., Paul, K. K., & Jena, S. (2018). Characterization of coke oven wastewater. IOP Conference Series: Earth and Environmental Science, 167, 012011.

    Google Scholar 

  • Mo, S.-D., & Ching, W. (1995). Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Physical Review B, 51, 13023.

    Article  CAS  Google Scholar 

  • Mondal, M., Mukherjee, R., Sinha, A., Sarkar, S., & De, S. (2019). Removal of cyanide from steel plant effluent using coke breeze, a waste product of steel industry. Journal of Water Process Engineering, 28, 135–143.

    Article  Google Scholar 

  • Mondal, K., & Sharma, A. (2014) 'Photocatalytic oxidation of pollutant dyes in wastewater by TiO2 and ZnO nano-materials—A mini-review'. Nanoscience & Technology for Mankind, 36–72.

  • Mondal, A., Saha, P., Sarkar, S. & Nair, U. G. (2021). Mitigation of cyanide from coke plant wastewater using chemical oxidation process. PREPRINT (Version 1) available at Research Square. https://doi.org/10.21203/rs.3.rs-727204/v1.

  • Monser, L., & Adhoum, N. (2002). Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater. Separation and Purification Technology, 26, 137–146.

    Article  CAS  Google Scholar 

  • Morillo Esparza, J., Cevallos Cueva, N., Sandoval Pauker, C., Vargas Jentzsch, P., & Muñoz Bisesti, F. (2019). Combined treatment using ozone for cyanide removal from wastewater: A comparison. Revista Internacional De Contaminación Ambiental, 35, 459–467.

    Article  Google Scholar 

  • Moussavi, G., Majidi, F., & Farzadkia, M. (2011). The influence of operational parameters on elimination of cyanide from wastewater using the electrocoagulation process. Desalination, 280, 127–133.

    Article  CAS  Google Scholar 

  • Ning, P., Qiu, J., Wang, X., Liu, W., & Chen, W. (2013). Metal loaded zeolite adsorbents for hydrogen cyanide removal. Journal of Environmental Sciences, 25, 808–814.

    Article  CAS  Google Scholar 

  • Núñez-Salas, R. E., Hernández-Ramírez, A., Hinojosa-Reyes, L., Guzmán-Mar, J. L., Villanueva-Rodriguez, M., & de Lourdes Maya-Trevino, M. (2019). Cyanide degradation in aqueous solution by heterogeneous photocatalysis using boron-doped zinc oxide. Catalysis Today, 328, 202–209.

    Article  Google Scholar 

  • Osathaphan, K., Boonpitak, T., Laopirojana, T., & Sharma, V. (2008). Removal of cyanide and zinc–cyanide complex by an ion-exchange process. Water, Air, and Soil Pollution, 194, 179–183.

    Article  CAS  Google Scholar 

  • Oudjehani, K., Zagury, G., & Deschenes, L. (2002). Natural attenuation potential of cyanide via microbial activity in mine tailings. Applied Microbiology and Biotechnology, 58, 409–415.

    Article  CAS  Google Scholar 

  • Pan, Y., Zhang, Y., Huang, Y., Jia, Y., & Chen, L. (2022). Enhanced photocatalytic oxidation degradability for real cyanide wastewater by designing photocatalyst GO/TiO2/ZSM-5: Performance and mechanism research. Chemical Engineering Journal, 428, 131257.

    Article  CAS  Google Scholar 

  • Paredes, L., Murgolo, S., Dzinun, H., Dzarfan Othman, M. H., Ismail, A. F., Carballa, M., & Mascolo, G. (2019). Application of immobilized TiO2 on PVDF dual layer hollow fibre membrane to improve the photocatalytic removal of pharmaceuticals in different water matrices. Applied Catalysis B: Environmental, 240, 9–18.

  • Parga, J., Shukla, S., & Carrillo-Pedroza, F. (2003). Destruction of cyanide waste solutions using chlorine dioxide, ozone and titania sol. Waste Management, 23, 183–191.

    Article  CAS  Google Scholar 

  • Pathak, U., Kumari, S., Das, P., Kumar, T., & Mandal, T. (2019). Role of advanced oxidation process in treatment of coke oven wastewater—A review. Waste Water Recycling and Management: 7th IconSWM -- ISWMAW 2017, 3, 37–51.

    Article  Google Scholar 

  • Pauna, H., Willms, T., Aula, M., Echterhof, T., Huttula, M., & Fabritius, T. (2021). Cyanide recombination in electric arc furnace plasma. Plasma Research Express, 3, 025008.

    Article  CAS  Google Scholar 

  • Pawar, V., & Gawande, S. (2015). An overview of the Fenton process for industrial wastewater. IOSR Journal of Mechanical and Civil Engineering, 2, 127–136.

    Google Scholar 

  • Petelin, A., Yusfin, Y. S., & Travyanov, A. Y. (2008). Possibility of cyanide formation in blast furnaces. Steel in Translation, 38, 5.

    Article  Google Scholar 

  • Pueyo, N., Rodríguez-Chueca, J., Ovelleiro, J., & Ormad, M. (2016). Limitations of the removal of cyanide from coking wastewater by treatment with hydrogen peroxide. Water, Air, & Soil Pollution, 227, 1–10.

    Article  CAS  Google Scholar 

  • Ravuru, S. S., Jana, A., & De, S. (2019). Synthesis of NiAl-layered double hydroxide with nitrate intercalation: Application in cyanide removal from steel industry effluent. Journal of Hazardous Materials, 373, 791–800.

    Article  CAS  Google Scholar 

  • Ravuru, S. S., Jana, A., & De, S. (2022). Cyanide removal from blast furnace effluent using layered double hydroxide based mixed matrix beads: Batch and fixed bed study. Journal of Cleaner Production, 371, 133634.

  • Ritcey, G. M. (2005). Tailings management in gold plants. Hydrometallurgy, 78, 3–20.

    Article  CAS  Google Scholar 

  • Roques, H. (1996). Chemical water treatment: Principles and practice (p. 620). VCH Publishers. Inc.

    Google Scholar 

  • Rubio, J., Souza, M., & Smith, R. (2002). Overview of flotation as a wastewater treatment technique. Minerals Engineering, 15, 139–155.

    Article  CAS  Google Scholar 

  • Saleh, T. A., Gondal, M., & Drmosh, Q. (2010). Preparation of a MWCNT/ZnO nanocomposite and its photocatalytic activity for the removal of cyanide from water using a laser. Nanotechnology, 21, 495705.

    Article  Google Scholar 

  • Sathya, K., Nagarajan, K., Carlin Geor Malar, G., Rajalakshmi, S., & Raja Lakshmi, P. (2022). A comprehensive review on comparison among effluent treatment methods and modern methods of treatment of industrial wastewater effluent from different sources. Applied Water Science, 12, 70.

    Article  CAS  Google Scholar 

  • Sboui, M., Nsib, M. F., Rayes, A., Swaminathan, M., & Houas, A. (2017). TiO2–PANI/Cork composite: A new floating photocatalyst for the treatment of organic pollutants under sunlight irradiation. Journal of Environmental Sciences, 60, 3–13.

    Article  CAS  Google Scholar 

  • Sharma, V. K., Yngard, R. A., Cabelli, D. E., & Baum, J. C. (2008). Ferrate (VI) and ferrate (V) oxidation of cyanide, thiocyanate, and copper (I) cyanide. Radiation Physics and Chemistry, 77, 761–767.

    Article  CAS  Google Scholar 

  • Sharma, M., Akhter, Y., & Chatterjee, S. (2019). A review on remediation of cyanide containing industrial wastes using biological systems with special reference to enzymatic degradation. World Journal of Microbiology and Biotechnology, 35, 70.

    Article  Google Scholar 

  • Shen, Z., Han, B., & Wickramasinghe, R. (2004). Cyanide removal from wastewater using gas membranes: Pilot-scale study. Water Environment Research, 76, 15–22.

    Article  CAS  Google Scholar 

  • Shokoohi, R., Poureshgh, Y., Parastar, S., Ahmadi, S., Shabanloo, A., Rahmani, Z., Asl, F. B., & Tabar, M. V. (2018). Comparing the efficiency of UV/ZrO2 and UV/H2O2/ZrO2 photocatalytic processes in furfural removal from aqueous solution. Applied Water Science, 8, 1–8.

    Article  CAS  Google Scholar 

  • Siboni, M. S., Samarghandi, M., Yang, J.-K., & Lee, S.-M. (2011). Photocatalytic removal of cyanide with illuminated TiO2. Water Science and Technology, 64, 1383–1387.

    Article  CAS  Google Scholar 

  • Simovic, L., Snodgrass, W. J., Murphy, K. L. S. (1985). Development of a model to describe the natural degradation of cyanide in gold milling effluents. In Van Zyl, D. (Ed.). Cyanide and the environment., (vol. II ,pp. 413–432). Colorado State University, USA.

  • Sinbuathong, N., Kongseri, B., Plungklang, P., & Khun-anake, R. (2000). Cyanide removal from laboratory wastewater using sodium hypochlorite and calcium hypochlorite. Agriculture and Natural Resources, 34, 74–78.

    CAS  Google Scholar 

  • Singh, N., & Balomajumder, C. (2016). Batch growth kinetic studies for elimination of phenol and cyanide using mixed microbial culture. Journal of Water Process Engineering, 11, 130–137.

    Article  Google Scholar 

  • Sonune, A., & Ghate, R. (2004). Developments in wastewater treatment methods. Desalination, 167, 55–63.

    Article  CAS  Google Scholar 

  • Sousa, R. R. M. D., Araújo, F. O. D., Costa, J. A. P. D., Nishimoto, A., Viana, B. C., & Alves, C., Jr. (2016). Deposition of TiO 2 film on duplex stainless steel substrate using the cathodic cage plasma technique. Materials Research, 19, 1207–1212.

    Article  Google Scholar 

  • Teixeira, L. A. C., Andia, J. P. M., Yokoyama, L., da Fonseca Araújo, F. V., & Sarmiento, C. M. (2013). Oxidation of cyanide in effluents by Caro’s Acid. Minerals Engineering, 45, 81–87.

    Article  CAS  Google Scholar 

  • Tu, Y., Han, P., Wei, L., Zhang, X., Yu, B., Qian, P., & Ye, S. (2019). Removal of cyanide adsorbed on pyrite by H2O2 oxidation under alkaline conditions. Journal of Environmental Sciences, 78, 287–292.

    Article  CAS  Google Scholar 

  • Walling, S. A., Um, W., Corkhill, C. L., & Hyatt, N. C. (2021). Fenton and Fenton-like wet oxidation for degradation and destruction of organic radioactive wastes. npj Materials Degradation, 5, 50. https://doi.org/10.1038/s41529-021-00192-3.

  • Wan, S., Zhao, W., Xiong, D., Li, S., Ye, Y., & Du, L. (2022). Novel alginate immobilized TiO2 reusable functional hydrogel beads with high photocatalytic removal of dye pollutions. Journal of Polymer Engineering, 42, 978–985.

    Article  CAS  Google Scholar 

  • Wang, M., Han, J., Xiong, H., Guo, R., & Yin, Y. (2015). Nanostructured hybrid shells of r-GO/AuNP/m-TiO2 as highly active photocatalysts. ACS Applied Materials & Interfaces, 7, 6909–6918.

    Article  CAS  Google Scholar 

  • Wang, L. K., Wang, M.-H.S., Shammas, N. K., & Hahn, H. H. (2021). Physicochemical treatment consisting of chemical coagulation, precipitation, sedimentation, and flotation. In L. K. Wang, M.-H.S. Wang, & Y.-T. Hung (Eds.), Integrated Natural Resources Research (pp. 265–397). Springer International Publishing.

    Chapter  Google Scholar 

  • Wedl, D. J., & Fulk, R. J. (1991). Cyanide destruction in plating sludges by hot alkaline chlorination. Metal Finishing, 89, 33–37.

    CAS  Google Scholar 

  • White, D. M., Pilon, T. A., & Woolard, C. (2000). Biological treatment of cyanide containing wastewater. Water Research, 34, 2105–2109.

    Article  CAS  Google Scholar 

  • Xie, F., & Dreisinger, D. (2009). Studies on solvent extraction of copper and cyanide from waste cyanide solution. Journal of Hazardous Materials, 169, 333–338.

    Article  CAS  Google Scholar 

  • Xie, F., Dreisinger, D., & Doyle, F. (2013). A review on recovery of copper and cyanide from waste cyanide solutions. Mineral Processing and Extractive Metallurgy Review, 34, 387–411.

    Article  CAS  Google Scholar 

  • Xing, Z., Zhang, J., Cui, J., Yin, J., Zhao, T., Kuang, J., Xiu, Z., Wan, N., & Zhou, W. (2018). Recent advances in floating TiO2-based photocatalysts for environmental application. Applied Catalysis B: Environmental, 225, 452–467.

    Article  CAS  Google Scholar 

  • Xu, H., Li, A., Feng, L., Cheng, X., & Ding, S. (2012). Destruction of cyanide in aqueous solution by electrochemical oxidation method. International Journal of Electrochemical Science, 7, 7516–7525.

    Article  CAS  Google Scholar 

  • Xu, M., Wu, C., & Zhou, Y. (2020). Advancements in the Fenton process for wastewater treatment. Advanced Oxidation Process, 61, 61–77.

  • Yan, T. Y. (1992). Removal of cyanide from water. U.S. Patent No. 5,112,494. Washington, DC: U.S. Patent and Trademark Office.

  • Yang, J. L., An, S. J., Park, W. I., Yi, G. C., & Choi, W. (2004). Photocatalysis using ZnO thin films and nanoneedles grown by metal–organic chemical vapor deposition. Advanced Materials, 16, 1661–1664.

    Article  CAS  Google Scholar 

  • Yazıcı, E. Y., Deveci, H., Alp, I., & Uslu, T. (2007). Generation of hydrogen peroxide and removal of cyanide from solutions using ultrasonic waves. Desalination, 216, 209–221.

    Article  Google Scholar 

  • Yeddou, A. R., Nadjemi, B., Halet, F., Ould-Dris, A., & Capart, R. (2010). Removal of cyanide in aqueous solution by oxidation with hydrogen peroxide in presence of activated carbon prepared from olive stones. Minerals Engineering, 23, 32–39.

    Article  CAS  Google Scholar 

  • Young, C. A., & Jordan, T. S. (1995). Cyanide remediation: current and past technologies. In Proceedings of the 10th annual conference on hazardous waste research (pp. 104-129). Kansas State University: Manhattan, KS.

  • Zeng, J., Liu, S., Cai, J., & Zhang, L. (2010). TiO2 immobilized in cellulose matrix for photocatalytic degradation of phenol under weak UV light irradiation. The Journal of Physical Chemistry C, 114, 7806–7811.

    Article  CAS  Google Scholar 

  • Zhang, M.-H., Dong, H., Zhao, L., Wang, D.-X., & Meng, D. (2019). A review on Fenton process for organic wastewater treatment based on optimization perspective. Science of the Total Environment, 670, 110–121.

    Article  CAS  Google Scholar 

  • Zhang, M., Cao, Y., Peng, B., Tian, Y., & Barvor, J. B. (2020). Removal of copper cyanide by precipitate flotation with ammonium salts. Process Safety and Environmental Protection, 133, 82–87.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

NP: conceptualization, methodology, software, writing—original draft preparation, visualisation, and supervision. SD: methodology, software, writing—original draft preparation. PB: reviewing, and supervision.

Corresponding author

Correspondence to Neha Pandey.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Neha Pandeya and Sunanda Duttab have equal contribution.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, N., Dutta, S. & Biswas, P. Cyanide Mitigation at Steel Metallurgical Process’s Effluent. Water Air Soil Pollut 234, 682 (2023). https://doi.org/10.1007/s11270-023-06679-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06679-w

Keywords

Navigation