Skip to main content

Advertisement

Log in

Groundwater Quality, Hydrogeochemical Characteristics, and Potential Health Risk Assessment in the Bhubaneswar City of Eastern India

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Rapid urbanization, population growth, anthropogenic factors, and unprecedented climatic conditions have led to the degradation of water resources which is a serious concern in many parts of the world. The present work will investigate the groundwater quality, hydrogeochemistry, and health risk assessment of Bhubaneswar City, in the eastern part of India. pH values range from 5.38 to 8.57 ± mean 6.7±0.68, indicating an acidic nature of groundwater. TDS ranges from 93 to 913 ± 316±171 mg/l. Based on values of the water quality index (WQI), 90% of groundwater samples are in the good to excellent category. Based on F and NO3 concentrations, human health risk assessment represents high risks for non-carcinogenic risks, like 94% for children and 95% for adults. Major hydrogeochemical facies are dominated by, Ca-Mg-Cl, and Ca-HCO3 water types, indicating mixed water facies characteristics. Relatively higher levels of Ca2+, Mg2+, and lower SO42− concentrations with acidic pH have controlling the dissolution of ions in the sedimentary basin aquifer. Geochemical modeling of groundwater shows an undersaturation state to near saturation conditions for the carbonate phases and an undersaturation state with the sulfate phase minerals, respectively. The multivariate analysis reveals the contributions of geogenic and anthropogenic factors controlling groundwater chemistry. The study identifies the hydrogeochemical characteristics, probable health risks, and sustainable management plans for the protection of freshwater resources in urban areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article. The manuscript has data included as electronic supplementary material.

References

  • Acharya, G. S. (2014). Studies on groundwater pollution due to iron content in Bhubaneswar, Odisha, India. International Journal of Current Engineering and Technology, 4(1), 88–93.

    Google Scholar 

  • Adimalla, N., & Quian, H. (2019). Groundwater quality evaluation using water quality index(WQI) for drinking purposes and human health risk (HHR) assessment in an agricultural region of Nanganur, South India. Ecotoxicology and Environmental Safety, 176, 153–161.

    Article  CAS  Google Scholar 

  • Adimalla, N., & Rajitha, S. (2018). Spatial distribution and seasonal variation in fluoride enrichment in groundwater and its associated human health risk assessment in Telangana State, South India. Human and Ecological Risk Assessment: An International Journal, 24, 1–14.

    Google Scholar 

  • Adimalla, N., & Quian, H. (2021). Groundwater chemistry, distribution and potential health risk appraisal of nitrate enriched groundwater: A case study from semi-urban region of South India. Ecotoxicology and Environmental Safety, 207, 111277.

    Article  CAS  Google Scholar 

  • Amiri, V., Sohrabi, N., Li, P., & Amiri, F. (2022). Groundwater quality for drinking and non-carcinogenic risk of nitrate in urban and rural areas of Fereidan Iran. Exposure and Health. https://doi.org/10.1007/s12403-022-00525-w

  • APHA. (2012). Standard methods for the examination of water and wastewater (22nd ed.).

    Google Scholar 

  • Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution (2nd ed.). AA Balkema Publishers.

    Google Scholar 

  • Aravinthasamy, P., Karunanidhi, D., Subramani, T., Srinivasamoorthy, K., & Anand, B. (2020). Geochemical evaluation of fluoride contamination in groundwater from Shanmuganadhi River basin, South India: Implication on human health. Environmental Geochemistry and Health, 42(7), 1937–1963.

    Article  CAS  Google Scholar 

  • Armengol, S., Manzano, M., Bea, S. A., & Martínez, S. (2017). Identifying and quantifying geochemical and mixing processes in the Mantanza-Riachuelo Aquifer System, Argentina. Science of the Total Environment, 599-600, 1417–1432.

    Article  CAS  Google Scholar 

  • BIS, (2012). Indian standard drinking water specification, Second Revision Bureau of Indian Standards, Drinking Water Sectional Committee, FAD 25. . ISO:10500:2012.

    Google Scholar 

  • Bulut, O. F., Duru, B., Cakmak, O., Gunhan, O., Dilek, F. B., & Yetis, U. (2020). Determination of groundwater threshold values: A methodological approach. Journal of Cleaner Production, 253, 120001.

    Article  Google Scholar 

  • Burri, N. M., Weatherl, R., Moeck, C., & Schirmer, M. (2019). A review of threats to groundwater quality in the Anthropocene. Science of the Total Environment, 684, 136–154.

    Article  CAS  Google Scholar 

  • CGWB. (2021). Aquifer mapping and management of ground water resources. Khurda district.

    Google Scholar 

  • Chen, J., Wu, H., Qian, H., & Gao, Y. (2017). Assessing nitrate and fluoride contaminants in drinking water and their health risk of rural residents living in a semiarid region of northwest China. Exposure and Health, 9(3), 183–195.

    Article  CAS  Google Scholar 

  • Chen, S., & Gui, H. (2017). Hydrogeochenical characteristics of groundwater in the coal-bearing aquifer of the Wugou coal mine, northern province, China. Applied Water Science, 7, 1903–1910.

    Article  CAS  Google Scholar 

  • Connor, N. P., Sarraino, S., Frantz, D. E., Bushaw-Newton, K., & MacAvoy, S. E. (2014). Geochemical characteristics of an urban river: Influences of an anthropogenic landscape. Applied Geochemistry, 47, 209–216.

    Article  CAS  Google Scholar 

  • Das, M., Kumar, A., & Mohapatra, M. (2010). Evaluation of drinking quality of groundwater through multivariate techniques in urban area. Environmental Monitoring Assessment, 166, 149–157. https://doi.org/10.1007/s10661-009-0991-9

    Article  CAS  Google Scholar 

  • Davies, P. J., Wright, I. A., Jonasson, O. J., & Findlay, S. J. (2010). Impact of concrete and PVC pipes on urban water chemistry. Urban Water Journal, 7(4), 233–241.

    Article  CAS  Google Scholar 

  • Fadel, A., Kanj, M., & Slim, K. (2021). Water quality index variations in a Mediterranean reservoir: A multivariate statistical analysis relating it to different variables over 8 years. Environmental Earth Sciences, 80, 65.

    Article  CAS  Google Scholar 

  • Gaikwad, S. K., Meshram, D., Wagh, V., Kandekar, A., & Kadam, A. (2019). Geochemical mobility of ions in groundwater from the tropical western coast of Maharashtra, India: Implication to groundwater quality. Environment Development and Sustainability, 22, 2591–2624.

    Article  Google Scholar 

  • Ganyaglo, S. Y., Gibrilla, A., Teye, E. M., & Owusu-Ansah, ED- GJ., Tettey, S., Diabene, P.Y., & Asimah, S. (2019). Groundwater fluoride contamination and probabilistic health risk assessment in fluoride endemic areas of the Upper East Region, Ghana. Chemosphere, 233, 862–872.

    Article  CAS  Google Scholar 

  • Gao, Y., Qian, H., Ren, W., Wang, H., Liu, F., & Yang, F. (2020). Hydrogeochemical characterization and quality assessment of groundwater based on integrated-weight water quality index in a concentrated urban area. Journal of Cleaner Production, 260, 121006.

    Article  CAS  Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world’s water chemistry. Science, 170, 180.

    Article  Google Scholar 

  • Grimmeisen, F., Lehman, M. F., Liesch, T., Goeppert, N., Klinger, J., Zopfi, J., & Goldscheider, N. (2017). Isotopic constraints on water source mixing, network leakage and contamination in an urban groundwater system. Science of the Total Environment, 583, 202–213.

    Article  CAS  Google Scholar 

  • Gulgundi, M. S., & Shetty, A. (2018). Groundwater quality assessment of urban Bengaluru using multivariate statistical techniques. Applied Water Science, 8, 43.

    Article  Google Scholar 

  • He, X., Li, P., Wu, J., Wei, M., Ren, X., & Wang, D. (2021). Poor groundwater quality and high potential health risks in the Datong Basin, northern China: Research from published data. Environmental Geochemistry and Health, 43, 791–812.

    Article  CAS  Google Scholar 

  • He, X. D., Wu, J. H., & He, S. (2019). Hydrochemical characteristics and quality evaluation of groundwater in terms of health risks in Luohe aquifer in Wuqi County of the Chinese Loess Plateau, northwest China. Human and Ecological Risk Assessment: International Journal, 25(1-2), 32–51.

    Article  CAS  Google Scholar 

  • Hem, J. D. (1989). Study and interpretation of the chemical characteristics of natural water. In US Geological Survey Water-Supply (Vol. 2254, 3rd ed., p. 263).

    Google Scholar 

  • Hounslow, A. W. (1995). Water quality data: Analysis and interpretation (pp. 47–126). CRC Press.

    Google Scholar 

  • Hui, T., Jizhong, D. U., Shimin, M., Zhuang, K., & Yan, G. (2021). Application of water quality index and multivariate statistical analysis in the hydrogeochemical assessment of shallow groundwater in Hailun, northeast China. Human and Ecological Risk Assessment: An International Journal, 27(3), 651–667. https://doi.org/10.1080/10807039.2020.1749827

    Article  CAS  Google Scholar 

  • Hussain, N. H., Yusoff, I., Tahir, W., Mohamed, I., Ibrahim, A. I. N., & Rambli, A. (2016). Multivariate statistical analysis for identifying water quality and hydrogeochemical evolution of shallow groundwater in Quaternary deposits in the Lower Kelantan River Basin Malaysian Peninsula. Environment Earth Science, 75, 1081.

    Article  Google Scholar 

  • ICMR. (Indian Council of Medical Research). (2009). Nutrient requirements and recommended dietary allowances for Indians (p. 334). A report of the expert group of the ICMR.

    Google Scholar 

  • Jasechko, S., Perrone, D., Befus, K. M., Cardenas, B., Ferguson, G., Gleeson, T., Luijendijk, E., Jeffrey, J. M. D., Taylor, R. G., Wada, Y., & Kirchner, J. W. (2017). Global aquifers dominated by fossil groundwater but wells vulnerable to modern contamination. Nature Geoscience, 10(6), 425–429.

    Article  CAS  Google Scholar 

  • Kadam, A. K., Wagh, V. M., Muley, A. A., Umrikar, B. N., & Sankhua, R. N. (2019). Prediction of water quality index using artificial neural network and multiple linear regression modelling approach in Shivganga River basin India. Modeling Earth Systems and Environment, 5(3), 951–962.

    Article  Google Scholar 

  • Kalaivanan, K., Gurugnanam, B., Pourghasemi, H. R., Suresh, M., & Kumaravel, S. (2017). Spatial assessment of groundwater quality using water quality index and hydrochemical indices in the Kodavanar sub-basin, Tamil Nadu, India. Sustainable Water Resources Management, 4, 627–641.

    Article  Google Scholar 

  • Karande, U. B., Kadam, A., & Umrikar, B. N. (2020). Environmental modelling of soil quality, heavy-metal enrichment and human health risk in sub-urbanized semiarid watershed of western India. Modeling Earth Systems and Environment, 6, 545–556.

    Article  Google Scholar 

  • Kaur, T., Bhardwaj, R., & Arora, S. (2017). Assessment of groundwater quality for drinking and irrigation purposes using hydrochemical studies in Malwa region, southwestern part of Punjab, India. Applied Water Science, 7, 3301–3316.

    Article  CAS  Google Scholar 

  • Kaushal, S. S., Duan, S., Doody, T. R., Haq, S., Smith, R. M., Johnson, N., Newcomb, K. D., Gorman, J., Bowman, N., Mayer, P. M., Wood, K. L., Belt, K. T., & Stack, W. P. (2017). Human-accelerated weathering increases salinization, major ions, and alkalinization in fresh water across land use. Applied Geochemistry, 83, 121–135.

    Article  CAS  Google Scholar 

  • Khan, N., Malik, A., & Nehra, K. (2020). Groundwater hydro-geochemistry, quality, microbiology and human health risk assessment in semi-arid area of Rajasthan, India: A chemometric approach. Environment Monitoring and Assessment, 193, 234.

    Article  Google Scholar 

  • Kim, K. (2002). Plagioclase weathering in the groundwater system of a sandy, silicate aquifer. Hydrology Processes, 16, 1793–1806.

    Article  Google Scholar 

  • Li, P. Y., Wu, J. H., & Qian, H. (2016). Hydrochemical appraisal of groundwater quality for drinking and irrigation purposes and the major influencing factors: A case study in and around Hua County China. Arabian Journal of Geosciences, 9(1), 16.

    Article  Google Scholar 

  • Li, P., He, X., Li, Y., & Xiang, G. (2019). Occurrence and health implication of fluoride in groundwater of loess aquifers in the Chinese Loess Plateau: A case study of Tongchuan, northwest China. Exposure and Health, 11(2), 95–107.

    Article  CAS  Google Scholar 

  • Liu, D., Qi, X., Qiang, F., Li, M., Zhu, W., Zhang, L., Abrar, F. M., Khan, M. I., Li, T., & Cui, S. (2019). A resilience evaluation method for a combined regional agricultural water and soil resource system based on Weighted Mahalanobis distance and a Gray-TOPIS model. Journal of Cleaner Production, 229, 667–679.

    Article  Google Scholar 

  • Liu, J., Peng, Y., Li, C., Gao, Z., & Chen, S. (2021). Characterization of the hydrochemistry of water resources of the Weibei Plain, Northern China, as well as an assessment of the risk of high groundwater nitrate levels to human health. Environmental Pollution, 268, 115947.

    Article  CAS  Google Scholar 

  • Liu, J., Wang, H., Jin, D., Xu, F., & Zhao, C. (2020). Hydrochemical characteristics and evolution processes of karst groundwater in Carboniferous Taiyuan formation in the Pingdingshan coalfield. Environmental Earth Sciences, 79, 151.

    Article  CAS  Google Scholar 

  • Loh, Y. S. A., Akosua, B. A., Manu, E., & Aliou, A. S. (2019). Assessment of groundwater quality and the main controls on its hydrochemistry in some Voltaian and basement aquifers, northern Ghana. Groundwater for Sustainable Development, 10, 100296.

    Article  Google Scholar 

  • Marghade, D., Malpe, D. B., & Rao, N. S. (2021). Applications of geochemical and multivariate statistical approaches for the evaluation of groundwater quality and human health risks in a semi-arid region of eastern Maharashtra, India. Environmental Geochemistry and Health, 43, 683–703.

    Article  CAS  Google Scholar 

  • Marghade, D., Malpe, D. B., & Subba Rao, N. (2019). Applications of geochemical and multivariate statistical approaches for the evaluation of groundwater quality and human health risks in a semi-arid region of eastern Maharashtra, India. Environmental Geochemistry and Health, 43, 683–703.

    Article  Google Scholar 

  • Marghade, D., Malpe, D. B., & Zade, A. B. (2012). Major ion chemistry of shallow groundwater of a fast growing city of Central India. Environment Monitoring and Assessment, 184, 2405–2418.

    Article  CAS  Google Scholar 

  • Mohanty, A. K., Lingaswamy, M., Rao, V. V. S. G., & Sankaran, S. (2018). Impact of acid mine drainage and hydrogeochemical studies in a part of Rajrappa coal mining area of Ramgarh District, Jharkhand State of India. Groundwater for Sustainable Development, 7, 164–175.

    Article  Google Scholar 

  • Mohanty, A. K., & Rao, V. V. S. G. (2019). Hydrogeochemical, seawater intrusion and oxygen isotope studies on a coastal region in the Puri District of Odisha, India. Catena, 172, 558–571.

    Article  CAS  Google Scholar 

  • Mohanty, S. D., & Dash, P. C. (2018). Urban geology of Bhubaneswar. SGAT Bulletin, 19, 23–36.

    Google Scholar 

  • Monjerezi, M., Vogt, R. D., Aagaard, P., & Saka, J. K. D. (2011). Hydro-geochemical processes in an area with saline groundwater in lower Shire River valley, Malawi: An integrated application of hierarchical cluster and principal component analyses. Applied Geochemistry, 26, 1399–1413.

    Article  CAS  Google Scholar 

  • Mostafa, M. G., Uddin, S. M. H., & Haque, A. B. M. H. (2017). Assessment of hydro-geochemistry and groundwater quality of Rajshahi City in Bangladesh. Applied Water Science, 7, 4663–4671.

    Article  CAS  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). Users guide to PHREEQC (Version 2) A computer Programme for speciation, batch reaction, one dimensional transport, and inverse geochemical calculations. USGS Water-Resources Investigation Reports, 99–4259.

  • Patil, V. B. B., Pinto, S. M., Govindaraju, T., Hebbalu, V. S., Bhat, V., & Kannanur, L. N. (2020). Multivariate statistics and water quality index (WQI) approach for geochemical assessment of groundwater quality - a case study of KanaviHalla Sub-Basin, Belagavi, India. Environmental Geochemistry and Health, 42, 2667–2684.

    Article  CAS  Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water analysis [M]. Transactions of the American Geophysical Union, 25, 914–923.

    Article  Google Scholar 

  • Qasemi, M., Afsharnia, M., Farhang, M., Bakhshizadeh, A., Allahdadi, M., & Zarei, A. (2018). Health risk assessment of nitrate exposure in groundwater of rural areas of Gonabad and Bajestan Iran. Environmental Earth Sciences, 77, 551.

    Article  Google Scholar 

  • Raghunath, R., Murthy, T. R. S., & Raghavan, B. R. (2002). The utility of multivariate statistical techniques in hydrogeochemical studies: An example from Karnataka, India. Water Resources, 36, 2437–2442.

    Google Scholar 

  • Ramakrishnaiah, C. R., Sadashivaiah, C., & Ranganna, G. (2009). Assessment of water quality index for the groundwater in Tumkur Taluk, Karnataka State India. E-Journal of Chemistry, 6(2), 523–530.

    Article  CAS  Google Scholar 

  • Saha, N., & Rahman, M. S. (2020). Groundwater hydrogeochemistry and probabilistic health risk assessment through exposure to arsenic-contaminated groundwater of Meghna floodplain, central-east Bangladesh. Ecotoxicology and Environmental Safety, 206, 111349.

    Article  CAS  Google Scholar 

  • Samal, P., Mohanty, A. K., Khaoash, S., & Mishra, P. P. (2022). Hydrogeochemical evaluation, groundwater quality appraisal, and potential health risk assessment in a coal mining region of Eastern India. Water Air Soil Pollution, 233, 324.

    Article  CAS  Google Scholar 

  • Saraswat, C., Kumar, P., & Dasgupta, R. (2019). Sustainability assessment of the groundwater quality in the Western India to achieve urban water security. Applied Water Science, 9, 73.

    Article  Google Scholar 

  • Satheeskumar, V., Subramani, T., Lakshumanan, C., Roy, P. D., & Karunanidhi, D. (2021). Groundwater chemistry and demarcation of seawater intrusion zones in the Thamirabarani delta of south India based on geochemical signatures. Environmental Geochemistry and health, 43(2), 757–770.

    Article  CAS  Google Scholar 

  • Sawyer, C. N., & McCarty, P. L. (1967). Chemistry of sanitary engineers (2nd ed.). McGraw Hill.

    Google Scholar 

  • Schoeller, H. (1967). Qualitative evaluation of groundwater resources. In H. Schoeller (Ed.), Methods and techniques of groundwater investigation and development. Water Resource Series (Vol. 33, pp. 44–52). UNESCO.

    Google Scholar 

  • Sefie, A., Aris, A.Z., Ramli, M.F., Narany, T.S, Shamsuddin, M.K.N., Saadudin, S.B., & Zali, M.A. (2018). Hydrogeochemistry and groundwater quality assessment of the multilayered aquifer in Lower Kelantan Basin. Malaysia Environment Earth Science 77(10), 397.

  • Selvakumar, S., Chandrasekar, N., & Kumar, G. (2017). Hydrogeochemical characteristics and groundwater contamination in the rapid urban development areas of Coimbatore, India. Water Resources and Industry, 17, 26–33.

    Article  Google Scholar 

  • Sener, S., Sener, E., & Davraz, A. (2017). Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Science of the Total Environment, 584-585, 131–144.

    Article  CAS  Google Scholar 

  • Shaikh, H., Gaikwad, H., & Kadam, A. (2020). Hydrogeochemical characterization of groundwater from semiarid region of western India for drinking and agricultural purposes with special reference to water quality index and potential health risks assessment. Applied Water Science, 10, 204.

    Article  CAS  Google Scholar 

  • Singaraja, C., Chidambaram, S., Jacob, N., Ezhilarasan, E., Velmurugan, C., & Manikandam, M. (2016). Taxonomy of groundwater quality using multivariate and spatial analyses in the Tuticorin District, Tamil Nadu India. Environment Development and Sustainability, 18(2), 393–429.

    Article  Google Scholar 

  • Singh, C. K., Kumar, A., Shashtri, S., Kumar, A., Kumar, P., & Mallick, J. (2017). Multivariate statistical analysis and geochemical modeling for geochemical assessment of groundwater of Delhi, India. Journal of Geochemical Exploration, 175, 59–71.

    Article  CAS  Google Scholar 

  • Singh, G., Rishi, M. S., & Herojeet, R. (2020). Evaluation of groundwater quality and human health risks from fluoride and nitrate in semi-arid region of northern India. Environment Geochemistry and Health, 42, 1833–1862.

    Article  CAS  Google Scholar 

  • Sosa, N. N., Kulkarni, H. V., Datta, S., Beilinson, E., Porfido, C., Spagnuolo, M., Zárate, M. A., & Surber, J. (2019). Occurrence and distribution of high arsenic in sediments and groundwater of the Claromecó fluvial basin, southern Pampean plain (Argentina). Science of the Total Environment, 695, 133673.

    Article  CAS  Google Scholar 

  • Srivastava, S. K., Bhargav, J. S., & Kumar, Y. S. (2014). Contamination of shallow groundwater of Bhubaneswar city due to urbanization. Pollution Research, 33(1), 139–145.

    CAS  Google Scholar 

  • Stallard, R. F., & Edmond, J. M. (1983). The influence of geology and weathering environment on the dissolved load. Journal of Geophysical Research: Oceans, 88, 9671–9688.

    Article  CAS  Google Scholar 

  • Su, H., Kang, W., Li, Y., & Li, Z. (2021). Fluoride and nitrate contamination of groundwater in the Loess Plateau, China: Sources and related human health risks. Environmental Pollution, 286, 117287.

    Article  CAS  Google Scholar 

  • Subba Rao, N., Marghade, D., & Dinakar, A. (2017). Geochemical characteristics and controlling factors of chemical composition of groundwater in a part of Guntur district, Andhra Pradesh India. Environmental Earth Science, 76, 747.

    Article  Google Scholar 

  • Subba Rao, N., Sunitha, B., Sun, L., Spandana, B. D., & Chaudhary, M. (2020). Mechanisms controlling groundwater chemistry and assessment of potential health risk: A case study from South India. Geochemistry, 80(4), 125568.

    Article  CAS  Google Scholar 

  • UNDESA. (2013). World population prospects. In Population Division Database. Detailed Indicators Revision. (United Nations Department of Economic and Social Affairs).

    Google Scholar 

  • USEPA. (2014). Human health evaluation manual, supplemental guidance: Update of standard default exposure factors-OSWER Directive 9200 (Vol. 1-120, p. 6).

    Google Scholar 

  • USEPA. (2004). Risk assessment guidance for superfund volume 1: Human health evaluation manual (partnE).

    Google Scholar 

  • Wagh, V. M., Panaskar, D. B., Mukate, S. V., Aamalawar, M. L., & Sahu, U. L. (2018). Nitrate associated health risks from groundwater of Kadava river basin Nashik, Maharashtra, India. Human and Ecological Risk Assessment: An International Journal, 26(3), 654–672.

    Article  Google Scholar 

  • Wagh, V. M., Panaskar, D. B., Varade, A. M., Mukate, S. V., Gaikward, S. K., & Pawar, R. S. (2016). Major ion chemistry and quality assessment of the groundwater resources of Nanded Tehsil, a part of southeast Deccan Volcanic Province, Maharashtra India. Environmental Earth Sciences, 75(21), 1418.

    Article  Google Scholar 

  • Wang, L., Dong, Y., Xu, Z., & Qiao, X. (2017). Hydrochemical and isotopic characteristics of groundwater in the northeastern Tennger Desert, northern China. Hydrogeology Journal, 25(8), 2363.

    Article  CAS  Google Scholar 

  • WHO. (World Health Organization). (2011). Guidelines for drinking water quality (4th ed.). World Health Organization.

    Google Scholar 

  • Xiao, J., Wang, L., Chai, N., Liu, T., Jin, Z., & Rinklebe, J. (2021). Groundwater hydrochemistry, source identification and pollution assessment in intensive industrial areas, eastern Chinese loess plateau. Environmental Pollution, 278, 116930.

    Article  CAS  Google Scholar 

  • Yan, J., Chen, J., Zhang, W., & Ma, F. (2020). Determining fluoride distribution and influencing factors in groundwater in Songyuan, Northeast China, using hydrochemical and isotopic methods. Journal of Geochemical Exploration, 217, 106605.

    Article  CAS  Google Scholar 

  • Yi, F. H., Chen, L., & Yan, F. (2019). The health risk weighting model in groundwater quality evaluation. Human and Ecological Risk Assessment, 25(8), 2089–2097.

    Article  CAS  Google Scholar 

  • Zhai, Y., Zhao, X., Teng, Y., Li, X., Zhang, J., Wu, J., & Zuo, R. (2017). Groundwater nitrate pollution and human health risk assessment by using HHRA model in an agricultural area, NE China. Ecotoxicology and Environmental Safety, 137, 130–142.

    Article  CAS  Google Scholar 

  • Zhang, Q., Qian, H., Xu, P., Hou, K., & Yang, F. (2021). Groundwater quality assessment using a new integrated-weight water quality index (IWQI) and driver analysis in the Jiaokou Irrigation District China. Ecotoxicology and Environmental Safety, 212, 111992.

    Article  CAS  Google Scholar 

  • Zhang, Q., Xu, P., & Qian, H. (2020). Groundwater quality assessment using improved water quality index (WQI) and human health risk (HHR) evaluation in a semi-arid region of Northwest China. Exposure and Health, 12(3), 487–500.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Prakash Kumar, Director of CSIR-NGRI, for his kind encouragement and permission to publish the manuscript. The kind help and assistance of Dr. Satyabrata Sahoo, a former research scholar, during the fieldwork is highly acknowledged. The manuscript no. is NGRI/Lib/2023/Pub-001.

Funding

The authors did not receive support from any external funding agency. The authors get partial research support from Ravenshaw University and CSIR - National Geophysical Research Institute.

Author information

Authors and Affiliations

Authors

Contributions

P. N.: fieldwork, sampling, and chemical analyses; software analysis; writing—original draft

A. K. M.: conceptualization; methodology; investigation; resources; supervision; writing—original draft, review, and editing

P. S.: fieldwork and chemical analyses

S. K.: supervision; writing—review and editing; resources

P. M.: data interpretation; writing—editing.

Corresponding author

Correspondence to Atulya Kumar Mohanty.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

Not applicable

Consent to Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, P., Mohanty, A.K., Samal, P. et al. Groundwater Quality, Hydrogeochemical Characteristics, and Potential Health Risk Assessment in the Bhubaneswar City of Eastern India. Water Air Soil Pollut 234, 609 (2023). https://doi.org/10.1007/s11270-023-06614-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06614-z

Keywords

Navigation