Skip to main content

Advertisement

Log in

Groundwater chemistry and demarcation of seawater intrusion zones in the Thamirabarani delta of south India based on geochemical signatures

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Sub-surface water samples from the delta of Thamirabarani River of south India were evaluated for human health risks and seawater intrusion using the geochemical signatures. Electrical conductivity (EC), total dissolved solids (TDS), pH and the concentrations of major cations and anions in 40 samples collected during the winter (January) and summer (July) of 2018 show comparable values. Subsequently, the results were verified with respect to the international drinking water quality standards. The piper trilinear diagram shows mixed Ca–Mg–Cl, Na–Cl, Ca–HCO3 and mixed Ca–Na–HCO3 facies in the samples. Similarly, the plenteous of cations are sequenced as Na+ > Ca2+ > Mg2+ > K+ and the plenteous of anions are sequenced as Cl > SO42− > HCO3>Br > NO3 > PO4. Gibbs plots illustrate that rock–water interaction and evaporation control the geochemistry of sub-surface water. More than 40% of the samples are unsuitable for drinking, and their higher EC and TDS values reflected the seawater intrusion, in addition to the anthropogenic activities (salt panning). Interrelationship between ions of sub-surface water was used to get a better insight into the saline water intrusion in the study area. To mitigate the river water salinization and seawater incursion in the aquifers, engineering solution such as weir construction across the Thamirabarani River near Mukkani village has been proposed. After construction of the weir, freshwater in the river can be diverted to the salt-affected and seawater-intruded areas to improve the scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alcalá, F. J., & Custodio, E. (2008). Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. Journal of Hydrology, 359(1–2), 189–207.

    Article  Google Scholar 

  • American Public Health Association (APHA). (1995). Standard methods for the examination of water and wastewater (Vol. 21). Washington, DC: American Public Health Association.

    Google Scholar 

  • Backer, L. C., Esteban, E., Rubin, C. H., Kieszak, S., & McGeehin, M. A. (2001). Assessing acute diarrhea from sulfate in drinking water. Journal-American Water Works Association, 93(9), 76–84.

    Article  CAS  Google Scholar 

  • Burton, A. C., & Cornhill, J. F. (1977). Correlation of cancer death rates with altitude and with the quality of water supply of the 100 largest cities in the United States. Journal of Toxicology and Environmental Health, Part A Current Issues, 3(3), 465–478.

    Article  CAS  Google Scholar 

  • Cantor, K. P., Hoover, R., Hartge, P., Mason, T. J., Silverman, D. T., Altman, R., et al. (1987). Bladder cancer, drinking water source, and tap water consumption: A case-control study. JNCI Journal of the National Cancer Institute, 79(6), 1269–1279.

    CAS  Google Scholar 

  • Capaccioni, B., Didero, M., Paletta, C., & Didero, L. (2005). Saline intrusion and refreshening in a multilayer coastal aquifer in the Catania Plain (Sicily, Southern Italy): Dynamics of degradation processes according to the hydrochemical characteristics of groundwaters. Journal of Hydrology, 307(1–4), 1–16.

    Article  CAS  Google Scholar 

  • Central Ground Water Board (CGWB). (2009). District subsurface water brochure, Tirunelveli district, Tamil Nadu. Technical Report Series

  • Chidambaram, S., Kumar, G. S., Prasanna, M. V., Peter, A. J., Ramanthan, A. L., & Srinivasamoorthy, K. (2009). A study on the hydrogeology and hydrogeochemistry of groundwater from different depths in a coastal aquifer: Annamalai Nagar, Tamilnadu, India. Environmental geology, 57(1), 59–73.

    Article  CAS  Google Scholar 

  • Duraisamy, S., Govindhaswamy, V., Duraisamy, K., Krishinaraj, S., Balasubramanian, A., & Thirumalaisamy, S. (2018). Hydrogeochemical characterization and evaluation of groundwater quality in Kangayam taluk, Tirupur district, Tamil Nadu, India, using GIS techniques. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-018-0183-z.

    Article  Google Scholar 

  • Ebrahimi, M., Kazemi, H., Ehtashemi, M., & Rockaway, T. D. (2016). Assessment of groundwater quantity and quality and saltwater intrusion in the Damghan basin, Iran. Chemie der Erde, 76(2), 227–241.

    Article  CAS  Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 17, 1088–1090.

    Article  Google Scholar 

  • Gorgij, A. D., Wu, J., & Moghadam, A. A. (2019). Groundwater quality ranking using the improved entropy TOPSIS method: A case study in Azarshahr Plain aquifer, east Azerbaijan, Iran. Human and Ecological Risk Assessment, 25(1–2), 176–190. https://doi.org/10.1080/10807039.2018.1564235.

    Article  CAS  Google Scholar 

  • Hema, S., Subramani, T., & Elango, L. (2010). GIS study on vulnerability assessment of water quality in a part of Cauvery River. International Journal of Environmental Sciences, 1(1), 1–17.

    CAS  Google Scholar 

  • Jalali, M. (2005). Major ion chemistry of groundwaters in the Bahar area, Hamadan, Western Iran. Journal of Environmental Geography, 47, 763–772.

    CAS  Google Scholar 

  • Karunanidhi, D., Aravinthasamy, P., Subramani, T., Wu, J., & Srinivasamoorthy, K. (2019). Potential health risk assessment for fluoride and nitrate contamination in hard rock aquifers of Shanmuganadhi River basin, South India. Human and Ecological Risk Assessment, 25(1–2), 250–270. https://doi.org/10.1080/10807039.2019.1568859.

    Article  CAS  Google Scholar 

  • Kim, J. H., Kim, R. H., Lee, J., & Chang, H. W. (2003). Hydrogeochemical characterization of major factors affecting the quality of shallow groundwater in the coastal area at Kimje in South Korea. Environmental Geology, 44(4), 478–489.

    Article  CAS  Google Scholar 

  • Krishna Kumar, S., Bharani, R., Magesh, N. S., Godson, P. S., & Chandrasekar, N. (2014). Hydrogeochemistry and groundwater quality appraisal of part of south Chennai coastal aquifers, Tamil Nadu, India using WQI and fuzzy logic method. Applied Water Sciences, 4, 341–350.

    Article  CAS  Google Scholar 

  • Li, P., Li, X., Meng, X., Li, M., & Zhang, Y. (2016a). Appraising groundwater quality and health risks from contamination in a semiarid region of Northwest China. Exposure and Health, 8(3), 361–379. https://doi.org/10.1007/s12403-016-0205-y.

    Article  CAS  Google Scholar 

  • Li, P., Qian, H., & Wu, J. (2018). Conjunctive use of groundwater and surface water to reduce soil salinization in the Yinchuan Plain, North-West China. International Journal of Water Resources Development, 34(3), 337–353. https://doi.org/10.1080/07900627.2018.1443059.

    Article  Google Scholar 

  • Li, P., Qian, H., Wu, J., Chen, J., Zhang, Y., & Zhang, H. (2014a). Occurrence and hydrogeochemistry of fluoride in shallow alluvial aquifer of Weihe River. China. Environmental Earth Sciences, 71(7), 3133–3145. https://doi.org/10.1007/s12665-013-2691-6.

    Article  CAS  Google Scholar 

  • Li, P., Tian, R., Xue, C., & Wu, J. (2017). Progress, opportunities and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China. Environmental Science and Pollution Research, 24(15), 13224–13234. https://doi.org/10.1007/s11356-017-8753-7.

    Article  Google Scholar 

  • Li, P., & Wu, J. (2019a). Sustainable living with risks: Meeting the challenges. Human and Ecological Risk Assessment, 25(1–2), 1–10. https://doi.org/10.1080/10807039.2019.1584030.

    Article  CAS  Google Scholar 

  • Li, P., & Wu, J. (2019b). Drinking water quality and public health. Exposure and Health, 11(2), 73–79. https://doi.org/10.1007/s12403-019-00299-8.

    Article  Google Scholar 

  • Li, P., Wu, J., & Qian, H. (2014b). Hydrogeochemistry and quality assessment of shallow groundwater in the southern part of the yellow river alluvial plain (Zhongwei section) China. Earth Science Research Journal, 18(1), 27–38. https://doi.org/10.15446/esrj.v18n1.34048.

    Article  CAS  Google Scholar 

  • Li, P., Wu, J., & Qian, H. (2016b). Hydrochemical appraisal of groundwater quality for drinking and irrigation purposes and the major influencing factors: A case study in and around Hua County, China. Arabian Journal of Geosciences, 9(1), 15. https://doi.org/10.1007/s12517-015-2059-1.

    Article  CAS  Google Scholar 

  • Li, P., Wu, J., Qian, H., Zhang, Y., Yang, N., Jing, L., et al. (2016c). Hydrogeochemical characterization of groundwater in and around a wastewater irrigated forest in the southeastern edge of the Tengger Desert, Northwest China. Exposure and Health, 8(3), 331–348. https://doi.org/10.1007/s12403-016-0193-y.

    Article  CAS  Google Scholar 

  • Magesh, N. S., Chandrasekar, N., & Elango, L. (2016). Occurrence and distribution of fluoride in the groundwater of the Tamiraparani River basin, South India: A geostatistical modeling approach. Environmental Earth Sciences, 75(23), 1483.

    Article  Google Scholar 

  • McArthur, J. M., Sikdar, P. K., Hoque, M. A., & Ghosal, U. (2012). Waste-water impacts on groundwater: Cl/Br ratios and implications for arsenic pollution of groundwater in the Bengal Basin and Red River Basin, Vietnam. Science of the Total Environment, 437, 390–402.

    Article  CAS  Google Scholar 

  • Mondal, N. C., Singh, V. P., Singh, S., & Singh, V. S. (2011). Hydrochemical characteristic of coastal aquifer from Tuticorin, Tamil Nadu, India. Environmental monitoring and assessment, 175(1–4), 531–550.

    Article  CAS  Google Scholar 

  • Narayanaswamy, S., & Lakshmi, P. (1967). Charnockitic rocks of Tirunelvelli district, Madras. Geological Society of India, 8, 38–50.

    Google Scholar 

  • Park, S. C., Yun, S. T., Chae, G. T., Yoo, I. S., Shin, K. S., Heo, C. H., et al. (2005). Regional hydrochemical study on salinization of coastal aquifers, western coastal area of South Korea. Journal of Hydrology, 313(3–4), 182–194.

    Article  CAS  Google Scholar 

  • Pazand, K., Khosravi, D., Ghaderi, M. R., & Rezvanianzadeh, M. R. (2018). Identification of the hydrogeochemical processes and assessment of groundwater in a semi-arid region using major ion chemistry: A case study of Ardestan basin in Central Iran. Groundwater for Sustainable Development, 6, 245–254.

    Article  Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Eos, Transactions American Geophysical Union, 25(6), 914–928.

    Article  Google Scholar 

  • Prasanna, M. V., Chidambaram, S., Hameed, A. S., & Srinivasamoorthy, K. (2011). Hydrogeochemical analysis and evaluation of groundwater quality in the Gadilam river basin, Tamil Nadu, India. Journal of earth system science, 120(1), 85–98.

    Article  CAS  Google Scholar 

  • Richter, B. C., & Kreitler, C. W. (1993). Geochemical techniques for identifying sources of ground-water salinization. Boca Raton: CRC Press.

    Google Scholar 

  • Satheeskumar, V., & Subramani, T. (2016). Preliminary investigation on environmental degradation due to salinization of river and groundwater in Thamirabarani Delta, South India. Indian Journal of Geo-Marine Sciences, 45(9), 1148–1153.

    Google Scholar 

  • Selvam, S., Manimaran, G., & Sivasubramanian, P. (2013). Hydrochemical characteristics and GIS-based assessment of groundwater quality in the coastal aquifers of Tuticorin corporation, Tamilnadu, India. Applied Water Science, 3(1), 145–159.

    Article  CAS  Google Scholar 

  • Senthilkumar, S., Balasubramanian, N., Gowtham, B., & Lawrence, J. F. (2017). Geochemical signatures of groundwater in the coastal aquifers of Thiruvallur district, south India. Applied Water Science, 7(1), 263–274.

    Article  CAS  Google Scholar 

  • Singaraja, C., Chidambaram, S., Prasanna, M. V., Thivya, C., & Thilagavathi, R. (2014). Statistical analysis of the hydrogeochemical evolution of groundwater in hard rock coastal aquifers of Thoothukudi district in Tamil Nadu, India. Environmental earth sciences, 71(1), 451–464.

    Article  CAS  Google Scholar 

  • Sridharan, M., & Nathan, D. S. (2017). Hydrochemical facies and ionic exchange in coastal aquifers of Puducherry region, India: Implications for seawater intrusion. Earth Systems and Environment, 1(1), 5.

    Article  Google Scholar 

  • Srinivasamoorthy, K., Vasanthavigar, M., Vijayaraghavan, K., Sarathidasan, R., & Gopinath, S. (2013). Hydrochemistry of groundwater in a coastal region of Cuddalore district, Tamilnadu, India: Implication for quality assessment. Arabian Journal of Geosciences, 6(2), 441–454.

    Article  CAS  Google Scholar 

  • Su, F., Wu, J., & He, S. (2019). Set pair analysis-Markov chain model for groundwater quality assessment and prediction: A case study of Xi’an City, China. Human and Ecological Risk Assessment, 25(1–2), 158–175. https://doi.org/10.1080/10807039.2019.1568860.

    Article  CAS  Google Scholar 

  • Subramani, T., Anandakumar, S., Kannan, R., & Elango, L. (2013). Identification of major hydrogeochemical processes in a hard rock terrain by NETPATH modeling. Book on Earth Resources and Environment, 29, 365–370.

    Google Scholar 

  • Subramani, T., Elango, L., & Damodarasamy, S. R. (2005). Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamil Nadu, India. Environmental Geology, 47(8), 1099–1110.

    Article  CAS  Google Scholar 

  • Subramani, T., Rajmohan, N., & Elango, L. (2010). Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environmental monitoring and assessment, 162(1–4), 123–137.

    Article  CAS  Google Scholar 

  • Tiwari, A. K., Singh, A. K., Singh, A. K., & Singh, M. P. (2017). Hydrogeochemical analysis and evaluation of surface water quality of Pratapgarh district, Uttar Pradesh, India. Applied Water Science, 7(4), 1609–1623.

    Article  CAS  Google Scholar 

  • Todd, D. K. (1980). Groundwater hydrology (2nd ed.). New York: Wiley.

    Google Scholar 

  • Wang, D., Wu, J., Wang, Y., & Ji, Y. (2019). Finding high-quality groundwater resources to reduce the hydatidosis incidence in the Shiqu County of Sichuan Province, China: Analysis, assessment, and management. Exposure and Health. https://doi.org/10.1007/s12403-019-00314-y.

    Article  Google Scholar 

  • World Health Organization (WHO). (2011). Guidelines for drinking-water quality. WHO Chronicle, 38(4), 104–108.

    Google Scholar 

  • Wu, J., & Sun, Z. (2016). Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, mid-west China. Exposure and Health, 8(3), 311–329. https://doi.org/10.1007/s12403-015-0170-x.

    Article  CAS  Google Scholar 

  • Wu, J., Zhou, H., He, S., & Zhang, Y. (2019). Comprehensive understanding of groundwater quality for domestic and agricultural purposes in terms of health risks in a coal mine area of the Ordos basin, north of the Chinese Loess Plateau. Environmental Earth Sciences, 78(15), 446. https://doi.org/10.1007/s12665-019-8471-1.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Civil Engineering, Government College of Technology, Coimbatore, for providing the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Subramani.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satheeskumar, V., Subramani, T., Lakshumanan, C. et al. Groundwater chemistry and demarcation of seawater intrusion zones in the Thamirabarani delta of south India based on geochemical signatures. Environ Geochem Health 43, 757–770 (2021). https://doi.org/10.1007/s10653-020-00536-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00536-z

Keywords

Navigation