Skip to main content

Advertisement

Log in

The Assessment of Rice and Paddy Fields in Mizoram, India, Suggests a Need for Better Health Risk Management

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The presence of heavy metals (HM) and trace elements (TE) in soil and rice can be either beneficial or harmful. Hence, assessment of the HM and TE present in them is of prime importance for proper health risk management. As a first-hand report, an assessment of the TE and HM in paddy fields and rice grains was undertaken to evaluate health-related issues after consuming local rice grains from Champhai, North Vanlaiphai, and Kolasib of Mizoram, India. The concentrations of TE and HM in paddy fields could be ranked in the order Fe > Zn > Mn > Cu > Ni > As, and no trace amounts of Cd and Pb were found. In soils and rice, all the elements were determined to be below permitted limits. A significant difference (p < 0.05) was found when the concentration of HM and TE in the soil and rice were compared. The Health Risk Index (HRI) value of rice consumers for all the study sites was less than 1 in all cases except for Ni from Champhai rice (1.6) suggesting cultivars from Champhai might pose some negative impacts on health and sought for better management system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  • Abbaspour, N., Hurrell, R., & Kelishadi, R. (2014). Review on iron and its importance for human health. Journal of Research in Medical Science, 19(2), 164–174.

    Google Scholar 

  • Ahmad, M. S. A., & Ashraf, M. (2012). Essential roles and hazardous effects of nickel in plants. Reviews of Environmental Contamination Toxicology, 124, 125–167. https://doi.org/10.1007/978-1-4614-0668-6_6

    Article  CAS  Google Scholar 

  • Allen, H. E., Huang, C. P., Bailey, G. W., & Bowers, A. R. (1994). Metal speciation and contamination of soil. CRC Press, Inc. https://doi.org/10.1002/ep.670150207

    Book  Google Scholar 

  • Alloway, B. J. (2001). Soil pollution and land contamination. Pollution. Causes, effects and control (4th ed.). The University of Birmingham.

    Google Scholar 

  • Arao, T., Kawasaki, A., Baba, K., Mori, S., & Matsumoto, S. (2009). Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environmental Science and Technology, 43(24), 9361–9367. https://doi.org/10.1021/es9022738

    Article  CAS  Google Scholar 

  • Awasthi, S., Chauhan, R., Srivastava, S., & Tripathi, R. D. (2017). The journey of arsenic from soil to grain in rice. Frontiers in Plant Science, 8, 1007–1008. https://doi.org/10.3389/fpls.2017.01007

    Article  Google Scholar 

  • Azman, E. A., Jusop, S., Ishak, C. F., & Ismail, R. (2014). Increasing rice production using different lime sources on an acid sulphate soil in Merbok, Malaysia. Pertanika Journal of Tropical Agriculture Science, 37, 223–245.

    Google Scholar 

  • Banerjee, M., Banerjee, N., Bhattacharjee, P., Mondal, D., Lythgoe, P. R., Martínez, M., Pan, J., Polya, D. A., & Giri, A. K. (2013). High arsenic in rice is associated with elevated genotoxic effects in humans. Scientific Reports, 3, 1–8. https://doi.org/10.1016/j.mam.2005.07.003

    Article  CAS  Google Scholar 

  • Banuelos, G. S., & Ajwa, H. A. (1999). Trace elements in soils and plants: An overview. Journal of Environmental Science and Public Health A, 34(4), 951–974. https://doi.org/10.1080/10934529909376875

    Article  Google Scholar 

  • Barnes, D. G., Dourson, M., Preuss, P., Bellin, J., Derosa, C., Engler, R., Erdreich, L., Farber, T., Fenner-Crisp, P., Francis, E., & Ghali, G. (1988). Reference dose (RfD): Description and use in health risk assessments. Regulatory Toxicology and Pharmacology, 8(4), 471–486. https://doi.org/10.1016/0273-2300(88)90047-5

    Article  CAS  Google Scholar 

  • Barrow, N. J. (1992). A brief discussion on the effect of temperature on the reaction of inorganic ions with soil. European Journal of Soil Science, 43(1), 37–45. https://doi.org/10.1111/j.1365-2389.1992.tb00118.x

    Article  CAS  Google Scholar 

  • Besnard, E., Chenu, C., Robert, M. (1999). Distribution of copper in champagne vineyards soils, as influenced by organic amendments. In 5. International Conference on the Biogeochemistry of Trace Elements, July 11–15, Vienna, Austria.

  • Biswas, K. P., Hossain, S., Deb, N., Bhuian, A. S. I., Gonçalves, S. C., Hossain, S., & Hossen, M. B. (2021). Assessment of the levels of pollution and of their risks by radioactivity and trace metals on marine edible fish and crustaceans at the bay of Bengal (Chattogram, Bangladesh). Environmental, 8, 13–14. https://doi.org/10.3390/environments8020013

    Article  Google Scholar 

  • Bozdogan Sert, E., Turkmen, M., & Cetin, M. (2019). Heavy metal accumulation in rosemary leaves and stems exposed to traffic-related pollution near Adana-İskenderun Highway (Hatay, Turkey). Environmental Monitoring and Assessment, 191, 1–12.

    Article  Google Scholar 

  • Brady, N. C., & Weil, R. R. (2002). Soil and the hydrologic cycle The Nature and Properties of Soils (5th ed.). University of Maryland. https://doi.org/10.2134/jnrlse.2002.0117

    Book  Google Scholar 

  • Cakmak, I., & Yazici, A. M. (2010). Magnesium: A forgotten element in crop production. Better Crops, 94(2), 23–25.

    Google Scholar 

  • Cempel, M., & Nikel, G. J. P. J. S. (2006). Nickel: A review of its sources and environmental toxicology. Polish Journal of Environmental Studies, 15(3), 375–382.

    CAS  Google Scholar 

  • Cetin, M. (2015a). Evaluation of the sustainable tourism potential of a protected area for landscape planning: A case study of the ancient city of Pompeipolis in Kastamonu. International Journal of Sustainable Development & World Ecology, 22(6), 490–495.

    Article  Google Scholar 

  • Cetin, M. (2015b). Using GIS analysis to assess urban green space in terms of accessibility: Case study in Kutahya. International Journal of Sustainable Development & World Ecology, 22(5), 420–424.

    Google Scholar 

  • Cetin, M. (2016). Sustainability of urban coastal area management: A case study on Cide. Journal of Sustainable Forestry, 35(7), 527–541.

    Article  Google Scholar 

  • Cetin, M., Aksoy, T., Bilge Ozturk, G., & Cabuk, A. (2022a). Developing a model for the relationship between vegetation and wind power using remote sensing and geographic information systems technology. Water, Air, & Soil Pollution, 233(11), 450. https://doi.org/10.1007/s11270-022-05887-0

    Article  CAS  Google Scholar 

  • Cetin, M., Isik Pekkan, O., Bilge Ozturk, G., Senyel Kurkcuoglu, M. A., Kucukpehlivan, T., & Cabuk, A. (2022b). Examination of the change in the vegetation around the Kirka Boron mine site by using remote sensing techniques. Water, Air, & Soil Pollution, 233(7), 254.

    Article  CAS  Google Scholar 

  • Cesur, A., Zeren Cetin, I., Cetin, M., Sevik, H., & Ozel, H. B. (2022). The use of Cupressus arizonica as a biomonitor of Li, Fe, and Cr pollution in Kastamonu. Water, Air, & Soil Pollution, 233(6), 193. https://doi.org/10.1007/s11270-022-05667-w

    Article  CAS  Google Scholar 

  • Cetin, M., & Jawed, A. A. (2021). The chancing of Mg concentrations in some plants grown in pakistan depends on plant species and the growing environment. Kastamonu University Journal of Engineering and Sciences, 7(2), 167–174.

    Google Scholar 

  • Cetin, M., Aljama, A. M. O., Alrabiti, O. B. M., Adiguzel, F., Sevik, H., & Zeren Cetin, I. (2022c). Using topsoil analysis to determine and map changes in Ni Co pollution. Water, Air, & Soil Pollution, 233(8), 293. https://doi.org/10.1007/s11270-022-05762-y

    Article  CAS  Google Scholar 

  • Chen, T. B., Zheng, Y. M., Lei, M., Huang, Z. C., Wu, H. T., Chen, H., Fan, K. K., Yu, K., Wu, X., & Tian, Q. Z. (2005). Assessment of heavy metal pollution in surface soils of urban parks in Beijing China. Chemosphere, 60(4), 542–551. https://doi.org/10.1016/j.chemosphere.2004.12.072

    Article  CAS  Google Scholar 

  • Cicek, N., Erdogan, M., Yucedag, C., & Cetin, M. (2022). Improving the detrimental aspects of salinity in salinized soils of arid and semi-arid areas for effects of vermicompost leachate on salt stress in seedlings. Water, Air, & Soil Pollution, 233(6), 197.

    Article  CAS  Google Scholar 

  • Colney, L., & Nautiyal, B. P. (2013). Characterization and evaluation of soils of Aizawl district, Mizoram, India using remote sensing and GIS techniques. Journal of Geomatics, 7(1), 83–91.

    Google Scholar 

  • Denneman, C. A., & Robberse, J. G. (1990). Ecotoxicological risk assessment as a base for development of soil quality criteria. In Contaminated Soil’90: Third International KfK/TNO Conference on Contaminated Soil, 10–14 December 1990, Karlsruhe, Federal Republic of Germany (pp. 157–164). Springer Netherlands.

  • Dórea, J. G. (2008). Persistent, bioaccumulative and toxic substances in fish: Human health considerations. Science of the Total Environment, 400(1–3), 93–114. https://doi.org/10.1016/j.scitotenv.2008.06.017

    Article  CAS  Google Scholar 

  • Dregne, H. E. (2011). Soils of arid regions. Elsevier. https://doi.org/10.1177/030913337700100312

    Book  Google Scholar 

  • Enyinna, P. I., & Nte, F. U. (2013). Estimation of soil hazard quotient of some identified heavy metals from an abandoned municipal waste disposal site in Aba Nigeria. Journal of Natural Sciences Research, 3(8), 89–93.

    Google Scholar 

  • Fangmin, C., Ningchun, Z., Haiming, X., Yi, L., Wenfang, Z., Zhiwei, Z., & Mingxue, C. (2006). Cadmium and lead contamination in japonica rice grains and its variation among the different locations in southeast China. Science of the Total Environment, 359(1–3), 156–166. https://doi.org/10.1016/j.scitotenv.2005.05.005

    Article  CAS  Google Scholar 

  • FAO/WHO. (2011). Codex Alimentarius Commission. Joint FAO/WHO Food Standards Programme Codex Committee on Contaminants in Foods. Fifth Session. Working Document for Information and Use in Discussions Related to Contaminants and Toxins in the GSCTFF (Prepared by Japan and the Netherlands) CF/5 INF/1 (vol. 89, pp. 21–25). The Hague, The Netherlands.

  • Fu, J., Zhou, Q., Liu, J., Liu, W., Wang, T., Zhang, Q., & Jiang, G. (2008). High levels of heavy metals in rice (Oryzasativa L.) from a typical E-waste recycling area in southeast China and its potential risk to human health. Chemosphere, 71(7), 1269–1275. https://doi.org/10.1016/j.chemosphere.2007.11.065

    Article  CAS  Google Scholar 

  • Gäbler, H. E. (1997). Mobility of heavy metals as a function of pH of samples from an overbank sediment profile contaminated by mining activities. Journal of Geochemical Exploration, 58(2–3), 185–194. https://doi.org/10.1016/S0375-6742(96)00061-1

    Article  Google Scholar 

  • Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International Journal of Environmental Research and Public Health, 17(11), 3782.

    Article  CAS  Google Scholar 

  • Grant, C. A., Clarke, J. M., Duguid, S., & Chaney, R. L. (2008). Selection and breeding of plant cultivars to minimize cadmium accumulation. Science of the Total Environment, 390(2–3), 301–310. https://doi.org/10.1016/j.scitotenv.2007.10.038

    Article  CAS  Google Scholar 

  • Guerrero, I. Y. (2005). Copper in plants. Brazilian Journal of Plant Physiology, 17(1), 145–156.

    Article  Google Scholar 

  • Hamon, R., McLaughlin, M., & Lombi, E. (2006). Natural attenuation of trace element availability in soils (First). CRC Press. https://doi.org/10.1201/9781420042832

    Book  Google Scholar 

  • Hang, X., Wang, H., Zhou, J., Ma, C., Du, C., & Chen, X. (2009). Risk assessment of potentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze River Delta. Environmental Pollution, 157(8–9), 2542–2549. https://doi.org/10.1016/j.envpol.2009.03.002

    Article  CAS  Google Scholar 

  • Hermans, C., Bourgis, F., Faucher, M., Strasser, R. J., Delrot, S., & Verbruggen, N. (2005). Magnesium deficiency in sugar beets alters sugar partitioning and phloem loading in young mature leaves. Planta, 220(4), 541–549.

    Article  CAS  Google Scholar 

  • Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 8(1), 167–182. https://doi.org/10.1093/bmb/ldg032

    Article  Google Scholar 

  • Joint FAO WHO Expert Committee on Food Additiv. (1972). Evaluation of certain food additives and the contaminants mercury, lead, and cadmium. World Health Organization.

    Google Scholar 

  • Jomova, K., Jenisova, Z., Feszterova, M., Baros, S., Liska, J., Hudecova, D., Rhodes, C. J., & Valko, M. (2011). Arsenic: Toxicity, oxidative stress and human disease. Journal of Applied Toxicology, 31(2), 95–107. https://doi.org/10.1002/jat.1649

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2010). Trace elements in soils and plants (4th ed.). CRC Press. https://doi.org/10.1201/b10158

    Book  Google Scholar 

  • Karatas, M., Dursun, S., Guler, E., Ozdemir, C. E. L. A. L. E. T. T. I. N., & Argun, M. E. (2006). Heavy metal accumulation in wheat plants irrigated by waste water. Cellulose Chemistry and Technology, 40(7), 575. https://doi.org/10.1002/jat.1649

    Article  CAS  Google Scholar 

  • Kobayashi, T., Kohno, Y., & Nakayama, K. (1992). The effects of simulated acid rain on the uptake of mineral elements in soybean plants. Journal of Agricultural Meteorology, 48(1), 11–18. https://doi.org/10.2480/agrmet.48.11

    Article  Google Scholar 

  • Kosolsaksakul, P., Farmer, J. G., Oliver, I. W., & Graham, M. C. (2014). Geochemical associations and availability of cadmium (Cd) in a paddy field system, northwestern Thailand. Environmental Pollution, 187, 153–161. https://doi.org/10.1016/j.envpol.2014.01.006

    Article  CAS  Google Scholar 

  • Leung, A. O., Duzgoren-Aydin, N. S., Cheung, K. C., & Wong, M. H. (2008). Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southeast China. Environmental Science & Technology, 42(7), 2674–2680. https://doi.org/10.1021/es071873x

    Article  CAS  Google Scholar 

  • Li, L., Hou, M., Cao, L., Xia, Y., Shen, Z., & Hu, Z. (2018). Glutathione S-transferases modulate Cu tolerance in Oryza sativa. Environmental and Experimental Botany, 155, 313–320. https://doi.org/10.1016/j.envexpbot.2018.07.007

    Article  CAS  Google Scholar 

  • Liu, H., Probst, A., & Liao, B. (2005). Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Science of the Total Environment, 339(1–3), 153–166. https://doi.org/10.1016/j.scitotenv.2004.07.030

    Article  CAS  Google Scholar 

  • Liu, J., Duan, C. Q., Zhu, Y. N., Zhang, X. H., & Wang, C. X. (2007). Effect of chemical fertilizers on the fractionation of Cu, Cr and Ni in contaminated soil. Environmental Geology, 52, 1601–1606.

    Article  CAS  Google Scholar 

  • Liu, Z., Cai, L., Liu, Y., Chen, W., & Wang, Q. (2019). Association between prenatal cadmium exposure and cognitive development of offspring: A systematic review. Environmental Pollution, 254, 113081. https://doi.org/10.1016/j.envpol.2019.113081

    Article  CAS  Google Scholar 

  • Loutfy, N., Fuerhacker, M., Tundo, P., Raccanelli, S., El Dien, A. G., & Ahmed, M. T. (2006). Dietary intake of dioxins and dioxin-like PCBs, due to the consumption of dairy products, fish/seafood and meat from Ismailia city Egypt. Science of the Total Environment, 370(1), 1–8. https://doi.org/10.1016/j.scitotenv.2006.05.012

    Article  CAS  Google Scholar 

  • Marzouk, S. H., Tindwa, H. J., Amuri, N. A., & Semoka, J. M. (2023). An overview of underutilized benefits derived from Azolla as a promising biofertilizer in lowland rice production. Heliyon, e13040.

  • Maeno, T., & Tanizaki, Y. (1996). Influence of pH of acid irrigation water on the transfer of elements into rice plant from soils. Radioisotopes (Tokyo), 45(3), 166–175.

    Article  CAS  Google Scholar 

  • McLean, E. O. (1983). Soil pH and lime requirements. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties (2nd ed., pp. 199–224). https://doi.org/10.2134/agronmonogr9.2.2ed.c12

  • Meharg, A. A., Norton, G., Deacon, C., Williams, P., Adomako, E. E., Price, A., ... & Islam, M. R. (2013). Variation in rice cadmium related to human exposure. Environmental Science & Technology47(11), 5613–5618. https://doi.org/10.1021/es400521h

  • Mennecke, B. E., & Crossland, M. D. (1996). Geographic information systems: Applications and research opportunities for information systems researchers. In Proceedings of HICSS-29: 29th Hawaii International Conference on System Sciences, 3, 537–546). https://doi.org/10.1109/HICSS.1996.493249

  • Mousavi, S. R., Shahsavari, M., & Rezaei, M. (2011). A general overview on manganese (Mn) importance for crops production. Australian Journal of Basic and Applied Sciences, 5(9), 1799–1803. https://doi.org/10.1021/es400521h

    Article  CAS  Google Scholar 

  • Muthayya, S., Sugimoto, J. D., Montgomery, S., & Maberly, G. F. (2014). An overview of global rice production, supply, trade, and consumption. Annals of the New York Academy of Sciences, 1324(1), 7–14. https://doi.org/10.1111/nyas.12540

    Article  Google Scholar 

  • Nguyen, T. P., Ruppert, H., Pasold, T., & Sauer, B. (2020). Paddy soil geochemistry, uptake of trace elements by rice grains (Oryza sativa) and resulting health risks in the Mekong River Delta. Vietnam. Environmental Geochemistry and Health, 42, 2377–2397.

    Article  CAS  Google Scholar 

  • Prasittikhet, J. (1987). Metal availability and rice growth under controlled redox potential and pH in acid sulfate soils of Thailand. Louisiana State University and Agricultural & Mechanical College.

    Google Scholar 

  • Roberts, T. L. (2014). Cadmium and phosphorous fertilizers: The issues and the science. Procedia Engineering, 83, 52–59. https://doi.org/10.1016/j.proeng.2014.09.012

    Article  CAS  Google Scholar 

  • Russell, R., Beard, J. L., Cousins, R. J., Dunn, J. T., Ferland, G ., Hambidge, K., Lynch, S., Penland, J. G., Ross, A. C., Stoecker, B. J., Suttie, J. W. (2001). Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. A report of the panel on micronutrients, subcommittees on upper reference levels of nutrients and of interpretation and uses of dietary reference intakes, and the standing committee on the scientific evaluation of dietary reference intakes food and nutrition board Institute of Medicine. National Academy Press.

  • Satpathy, D., Reddy, M. V., & Dhal, S. P. (2014). Risk assessment of heavy metals contamination in paddy soil, plants, and grains (Oryza sativa L.) at the East Coast of India. BioMed Research International, 2014, 11. https://doi.org/10.1155/2014/545473

  • Serafim, A., Company, R., Lopes, B., Rosa, J., Cavaco, A., Castela, G., ... & Bebianno, M. J. (2012). Assessment of essential and nonessential metals and different metal exposure biomarkers in the human placenta in a population from the south of Portugal. Journal of Toxicology and Environmental Health, Part A75(13–15), 867–877.https://doi.org/10.1080/15287394.2012.690704.

  • Shimbo, S., Zhang, Z. W., Watanabe, T., Nakatsuka, H., Matsuda-Inoguchi, N., Higashikawa, K., & Ikeda, M. (2001). Cadmium and lead contents in rice and other cereal products in Japan in 1998–2000. Science of the Total Environment, 281(1–3), 165–175. https://doi.org/10.1016/S0048-9697(01)00844-0

    Article  CAS  Google Scholar 

  • Singh, J., Upadhyay, S. K., Pathak, R. K., & Gupta, V. (2011). Accumulation of heavy metals in soil and paddy crop (Oryza sativa), irrigated with water of Ramgarh Lake, Gorakhpur, UP India. Toxicological & Environmental Chemistry, 93(3), 462–473. https://doi.org/10.1080/02772248.2010.546559

    Article  CAS  Google Scholar 

  • Singh, R., Singh, D. P., Kumar, N., Bhargava, S. K., & Barman, S. C. (2010). Accumulation and translocation of heavy metals in soil and plants from fly ash contaminated area. Journal of Environmental Biology, 31(4), 421–430.

    CAS  Google Scholar 

  • Solanki, M. (2021). The Zn as a vital micronutrient in plants. Journal of Microbiology, Biotechnology and Food Sciences, 11, 4026–4026.

    Article  Google Scholar 

  • Sposito, G. (1989). The Chemistry of Soils (1st ed.). Oxford University Press.

    Google Scholar 

  • Tao, S. S. H., & Michael Bolger, P. (1999). Dietary arsenic intakes in the United States: FDA total diet study, September 1991-December 1996. Food Additives & Contaminants, 16(11), 465–472. https://doi.org/10.1080/026520399283759

    Article  CAS  Google Scholar 

  • Tchounwou, P. B., Wilson, B. A., Abdelghani, A. A., Ishaque, A. B., & Patlolla, A. K. (2002). Differential cytotoxicity and gene expression in human liver carcinoma (HepG2) cells exposed to arsenic trioxide, and monosodium acid methanearsonate (MSMA). International Journal of Molecular Sciences, 3(11), 1117–1132. https://doi.org/10.3390/i3111117

    Article  CAS  Google Scholar 

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Experientia Supplementum, 101, 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

  • Tsukahara, T., Ezaki, T., Moriguchi, J., Furuki, K., Shimbo, S., Matsuda-Inoguchi, N., & Ikeda, M. (2003). Rice as the most influential source of cadmium intake among general Japanese population. Science of the Total Environment, 305(1–3), 41–51. https://doi.org/10.1016/S0048-9697(02)00475-8

    Article  CAS  Google Scholar 

  • Tuzen, M. (2009). Toxic and essential trace elemental contents in fish species from the Black Sea. Turkey. Food and Chemical Toxicology, 47(8), 1785–1790. https://doi.org/10.1016/j.fct.2009.04.029

    Article  CAS  Google Scholar 

  • United States Department of Agriculture. (2003). Database for the flavonoid content of selected foods. US Department of Agriculture.

    Google Scholar 

  • United State Environmental Protection Agency. (1999). Guidance for performing aggregate exposure and risk assessments. Office of Pesticide Programs, Office of Prevention, Pesticides, and Toxic Substances.

    Google Scholar 

  • United State Environmental Protection Agency. (2011). Integrated risk information system. Environmental protection agency region I. Office of Pesticide Programs, Office of Prevention, Pesticides, and Toxic Substances.

    Google Scholar 

  • Vanlalsanga, S. P., & Singh, Y. T. (2019). Rice of Northeast India harbor rich genetic diversity as measured by SSR markers and Zn/Fe content. BMC Genetics, 20(1), 1–13.

    Article  CAS  Google Scholar 

  • Wang, X., Sato, T., Xing, B., & Tao, S. (2005). Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Science of the Total Environment, 350(1–3), 28–37. https://doi.org/10.1016/j.scitotenv.2004.09.044

    Article  CAS  Google Scholar 

  • Wang, X. N., Gu, Y. G., Wang, Z. H., Ke, C. L., & Mo, M. S. (2018). Biological risk assessment of heavy metals in sediments and health risk assessment in bivalve mollusks from Kaozhouyang Bay, South China. Marine Pollution Bulletin, 133, 312–319. https://doi.org/10.1016/j.marpolbul.2018.05.059

    Article  CAS  Google Scholar 

  • Watanabe, T., Shimbo, S., Moon, C. S., Zhang, Z. W., & Ikeda, M. (1996). Cadmium contents in rice samples from various areas in the world. Science of the Total Environment, 184(3), 191–196. https://doi.org/10.1016/0048-9697(96)05100-5

    Article  CAS  Google Scholar 

  • World Health Organization. (1989). Aluminum: Evaluation of certain food additives and contaminants. 32 Report of the Joint FAO/WHO Expert Committee on Food Additives: 28–31.

  • World Health Organization. (1992). Cadmium, Environmental Health Criteria, Vol. 134. Geneva.

  • World Health Organization. (1996). Permissible limits of heavy metals in soil and plants. Switzerland.

    Google Scholar 

  • Willis, M. S., Monaghan, S. A., Miller, M. L., McKenna, R. W., Perkins, W. D., Levinson, B. S., Bhushan, V., & Kroft, S. H. (2005). Zinc-induced copper deficiency: A report of three cases initially recognized on bone marrow examination. American Journal of Clinical Pathology, 123(1), 125–131. https://doi.org/10.1309/V6GVYW2QTYD5C5PJ

    Article  Google Scholar 

  • Wittsiepe, J., Schnell, K., Hilbig, A., Schrey, P., Kersting, M., & Wilhelm, M. (2009). Dietary intake of nickel and zinc by young children–Results from food duplicate portion measurements in comparison to data calculated from dietary records and available data on levels in food groups. Journal of Trace Elements in Medicine and Biology, 23(3), 183–194. https://doi.org/10.1016/j.jtemb.2009.03.007

    Article  CAS  Google Scholar 

  • Wong, S. C., Li, X. D., Zhang, G., Qi, S. H., & Min, Y. S. (2002). Heavy metals in agricultural soils of the Pearl River Delta South China. Environmental Pollution, 119(1), 33–44. https://doi.org/10.1016/S0269-7491(01)00325-6

    Article  CAS  Google Scholar 

  • Xiao, T., Mi, M., Wang, C., Qian, M., Chen, Y., Zheng, L., ... & Xia, Y. (2018). A methionine-R-sulfoxide reductase, OsMSRB5, is required for rice defense against copper toxicity. Environmental and experimental botany153, 45–53. https://doi.org/10.1016/j.envexpbot.2018.04.006.

  • Yedjou, C. G., Moore, P., & Tchounwou, P. B. (2006). Dose-and time-dependent response of human leukemia (HL-60) cells to arsenic trioxide treatment. International Journal of Environmental Research and Public Health, 3(2), 136–140. https://doi.org/10.3390/ijerph2006030017

    Article  CAS  Google Scholar 

  • Yong, R. N., Warkentin, B. P., Phadungchewit, Y., & Galvez, R. (1990). Buffer capacity and lead retention in some clay materials. Water, Air, and Soil Pollution, 53, 53–67.

    Article  CAS  Google Scholar 

  • Yong, R. N., & Phadungchewit, Y. (1993). pH influence on selectivity and retention of heavy metals in some clay soils. Canadian Geotechnical Journal, 30(5), 821–833. https://doi.org/10.1139/t93-073

    Article  CAS  Google Scholar 

  • Yu, T. R. (1990). Characteristics of soil acidity of paddy soils in relation to rice growth. In Plant-Soil Interactions at Low pH: Proceedings of the Second International Symposium on Plant-Soil Interactions at Low pH, 24–29 June 1990, Beckley West Virginia, USA (pp. 107-112). Springer Netherlands. https://doi.org/10.1007/978-94-011-3438-5_12

  • Zhang, M. K., & Ke, Z. X. (2004). Heavy metals, phosphorus and some other elements in urban soils of Hangzhou City. China. Pedosphere, 14(2), 177–185.

    CAS  Google Scholar 

  • Zhang, Y. Y., Wu, W., & Liu, H. (2019). Factors affecting variations of soil pH in different horizons in hilly regions. Plos one, 14(6), e0218563. https://doi.org/10.1371/journal.pone.0218563

    Article  CAS  Google Scholar 

  • Zheng, N., Wang, Q., Zhang, X., Zheng, D., Zhang, Z., & Zhang, S. (2007a). Population health risk due to dietary intake of heavy metals in the industrial area of Huludao city China. Science of the Total Environment, 387(1–3), 96–104. https://doi.org/10.1615/JEnvironPatholToxicolOncol.v28.i3.10

    Article  CAS  Google Scholar 

  • Zheng, N., Wang, Q., Zhang, X., Zheng, D., Zhang, Z., & Zhang, S. (2007b). Population health risk due to dietary intake of heavy metals in the industrial area of Huludao city China. Science of the Total Environment, 387(1–3), 96–104. https://doi.org/10.1016/j.scitotenv.2007.07.044

    Article  CAS  Google Scholar 

  • Zhuang, P., McBride, M. B., Xia, H., Li, N., & Li, Z. (2009). Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science of the Total Environment, 407(5), 1551–1561. https://doi.org/10.1016/j.scitotenv.2008.10.061

    Article  CAS  Google Scholar 

  • Zhu, Y. G., Williams, P. N., & Meharg, A. A. (2008). Exposure to inorganic arsenic from rice: A global health issue? Environmental Pollution, 154(2), 169–171.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Head of the Department of Botany, Mizoram University, and Mr PS Lalbiaktluanga for providing helpful lending hands. The author also thanks the Department of Chemistry, Mizoram University for the AAS facility. HS thanks UGC for the National Fellowship for Higher Education for Schedule Tribe Students (NFST).

Author information

Authors and Affiliations

Authors

Contributions

HS: Data collection, data handling, original draft, data curation, writing, review, and editing. LR: supervision, review, and editing. RH: Statistical analysis, supervision. YTS: supervision, writing, and editing.

Corresponding author

Correspondence to Y. Tunginba Singh.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sailo, H., Ralte, L., Hnamte, R. et al. The Assessment of Rice and Paddy Fields in Mizoram, India, Suggests a Need for Better Health Risk Management. Water Air Soil Pollut 234, 378 (2023). https://doi.org/10.1007/s11270-023-06389-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06389-3

Keywords

Navigation