Skip to main content
Log in

Recent Insights into the Silver Nanomaterials: an Overview of Their Transformation in the Food Webs and Toxicity in the Aquatic Ecosystem

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract 

Nanotechnology (NT) in the past and current decade has gained a lot of attention due to its potent antibacterial activities and its unique physicochemical features. NT works based on nanoparticles in which silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials. Therefore, AgNPs have been used for a variety of items, with encouraging outcomes. Besides the significant applications, there is a lot of disagreement over how AgNPs interact with the environment and how hazardous they are to aquatic life. Most worldwide freshwater ecosystems are polluted by AgNPs-containing effluents discharged from sewage and wastewater treatment plants and/or runoff streams. In the aquatic food web, fish acquire higher trophic levels; therefore, AgNPs accumulation in the body is inevitable. The bioaccumulation of AgNPs causes numerous toxic effects such as inflammation, oxidative stress, tissue disruption, and intestinal bacterial dysbiosis which could possibly lead to death. Therefore, this study aimed to describe the fate of AgNPs in the food web, their transformation and accumulation, and their possible consequences in fish. The various causes of toxicity within the fish body and the detrimental impacts on the aquatic ecosystem still require more in-depth study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The dataset generated and analyzed during the current study are available from the corresponding author on reasonable request.

References  

  • Adegboyega, N. F., Sharma, V. K., Cizmas, L., & Sayes, C. M. (2016). UV light induces Ag nanoparticle formation: Roles of natural organic matter, iron, and oxygen. Environmental Chemistry Letters, 14(3), 353–357.

    Article  CAS  Google Scholar 

  • Afifi, M., Saddick, S., & Abu Zinada, O. A. (2016). Toxicity of silver nanoparticles on the brain of Oreochromis niloticus and Tilapia zillii. Saudi Journal of Biological Sciences, 23(6), 754–760. https://doi.org/10.1016/j.sjbs.2016.06.008

    Article  CAS  Google Scholar 

  • Akaighe, N., MacCuspie, R. I., Navarro, D. A., Aga, D. S., Banerjee, S., Sohn, M., & Sharma, V. K. (2011). Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. Environmental Science & Technology, 45(9), 3895–3901.

    Article  CAS  Google Scholar 

  • Akaighe, N., Depner, S. W., Banerjee, S., Sharma, V. K., & Sohn, M. (2012). The effects of monovalent and divalent cations on the stability of silver nanoparticles formed from direct reduction of silver ions by Suwannee River humic acid/natural organic matter. Science of the Total Environment, 441, 277–289.

    Article  CAS  Google Scholar 

  • Akter, M., Sikder, M. T., Rahman, M. M., Ullah, A. K. M. A., Hossain, K. F. B., Banik, S., et al. (2018). A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. Journal of Advanced Research, 9, 1–16.

    Article  CAS  Google Scholar 

  • Ale, A., Rossi, A. S., Bacchetta, C., Gervasio, S., de la Torre, F. R., & Cazenave, J. (2018). Integrative assessment of silver nanoparticles toxicity in Prochilodus lineatus fish. Ecological Indicators, 93, 1190–1198. https://doi.org/10.1016/j.ecolind.2018.06.023

    Article  CAS  Google Scholar 

  • Ali, I., Liu, K., Long, D., Faisal, S., Hilal, M. G., Ali, I., et al. (2021). Ramadan fasting leads to shifts in human gut microbiota structured by dietary composition. Frontiers in Microbiology. https://www.frontiersin.org/article/10.3389/fmicb.2021.642999

  • Al-Kattan, A., Wichser, A., Vonbank, R., Brunner, S., Ulrich, A., Zuin, S., et al. (2015). Characterization of materials released into water from paint containing nano-SiO2. Chemosphere, 119, 1314–1321.

    Article  CAS  Google Scholar 

  • Ansar, S., Tabassum, H., Aladwan, N. S. M., Naiman Ali, M., Almaarik, B., AlMahrouqi, S., et al. (2020). Eco friendly silver nanoparticles synthesis by Brassica oleracea and its antibacterial, anticancer and antioxidant properties. Scientific Reports, 10(1), 18564. https://doi.org/10.1038/s41598-020-74371-8

    Article  CAS  Google Scholar 

  • AshaRani, P. V., Mun, L. K., & G., Hande, M. P., & Valiyaveettil, S. (2009). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 3(2), 279–290.

    Article  CAS  Google Scholar 

  • Ashraf, S. A., Siddiqui, A. J., Elkhalifa, A. E. O., Khan, M. I., Patel, M., Alreshidi, M., et al. (2021). Innovations in nanoscience for the sustainable development of food and agriculture with implications on health and environment. Science of The Total Environment, 768, 144990. https://doi.org/10.1016/j.scitotenv.2021.144990

    Article  CAS  Google Scholar 

  • Auclair, J., Turcotte, P., Gagnon, C., Peyrot, C., Wilkinson, K. J., & Gagné, F. (2019). The influence of surface coatings on the toxicity of silver nanoparticle in rainbow trout. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 226, 108623. https://doi.org/10.1016/j.cbpc.2019.108623

    Article  CAS  Google Scholar 

  • Bacchetta, C., Ale, A., Simoniello, M. F., Gervasio, S., Davico, C., Rossi, A. S., et al. (2017). Genotoxicity and oxidative stress in fish after a short-term exposure to silver nanoparticles. Ecological Indicators, 76, 230–239. https://doi.org/10.1016/j.ecolind.2017.01.018

    Article  CAS  Google Scholar 

  • Bapat, R. A., Chaubal, T. V., Joshi, C. P., Bapat, P. R., Choudhury, H., Pandey, M., et al. (2018). An overview of application of silver nanoparticles for biomaterials in dentistry. Materials Science and Engineering: C, 91, 881–898.

    Article  CAS  Google Scholar 

  • Bäumler, A. J., & Sperandio, V. (2016). Interactions between the microbiota and pathogenic bacteria in the gut. Nature, 535(7610), 85–93.

    Article  Google Scholar 

  • Bilberg, K., Hovgaard, M. B., Besenbacher, F., & Baatrup, E. (2012). In vivo toxicity of silver nanoparticles and silver ions in zebrafish (Danio rerio). Journal of Toxicology, 2012, 293784. https://doi.org/10.1155/2012/293784

    Article  CAS  Google Scholar 

  • Bin-Jumah, M., Monera, A.-A., Albasher, G., & Alarifi, S. (2020). Effects of green silver nanoparticles on apoptosis and oxidative stress in normal and cancerous human hepatic cells in vitro. International Journal of Nanomedicine, 15, 1537.

    Article  CAS  Google Scholar 

  • Bouldin, J. L., Ingle, T. M., Sengupta, A., Alexander, R., Hannigan, R. E., & Buchanan, R. A. (2008). Aqueous toxicity and food chain transfer of quantum dots™ in freshwater algae and Ceriodaphnia dubia. Environmental Toxicology and Chemistry: An International Journal, 27(9), 1958–1963.

    Article  CAS  Google Scholar 

  • Brar, S. K., Verma, M., Tyagi, R. D., & Surampalli, R. Y. (2010). Engineered nanoparticles in wastewater and wastewater sludge–Evidence and impacts. Waste Management, 30(3), 504–520.

    Article  CAS  Google Scholar 

  • Brinkmann, B. W., Koch, B. E. V., Spaink, H. P., Peijnenburg, W. J. G. M., & Vijver, M. G. (2020). Colonizing microbiota protect zebrafish larvae against silver nanoparticle toxicity. Nanotoxicology, 14(6), 725–739.

    Article  CAS  Google Scholar 

  • Bundschuh, M., Seitz, F., Rosenfeldt, R. R., & Schulz, R. (2016). Effects of nanoparticles in fresh waters: Risks, mechanisms and interactions. Freshwater Biology, 61(12), 2185–2196.

    Article  Google Scholar 

  • Bundschuh, M., Filser, J., Lüderwald, S., McKee, M. S., Metreveli, G., Schaumann, G. E., et al. (2018). Nanoparticles in the environment: Where do we come from, where do we go to? Environmental Sciences Europe, 30(1), 6. https://doi.org/10.1186/s12302-018-0132-6

    Article  CAS  Google Scholar 

  • Bundschuh, M., Englert, D., Rosenfeldt, R. R., Bundschuh, R., Feckler, A., Lüderwald, S., et al. (2019). Nanoparticles transported from aquatic to terrestrial ecosystems via emerging aquatic insects compromise subsidy quality. Scientific Reports, 9(1), 15676. https://doi.org/10.1038/s41598-019-52096-7

    Article  CAS  Google Scholar 

  • Butt, R. L., & Volkoff, H. (2019). Gut microbiota and energy homeostasis in fish. Frontiers in Endocrinology. https://www.frontiersin.org/article/10.3389/fendo.2019.00009

  • Caballero-Guzman, A., Sun, T., & Nowack, B. (2015). Flows of engineered nanomaterials through the recycling process in Switzerland. Waste Management, 36, 33–43.

    Article  CAS  Google Scholar 

  • Calipinar, H., & Ulas, D. (2019). Development of nanotechnology in the world and nanotechnology standards in Turkey. Procedia Computer Science, 158, 1011–1018. https://doi.org/10.1016/j.procs.2019.09.142

    Article  Google Scholar 

  • Cambier, S., Røgeberg, M., Georgantzopoulou, A., Serchi, T., Karlsson, C., Verhaegen, S., et al. (2018). Fate and effects of silver nanoparticles on early life-stage development of zebrafish (Danio rerio) in comparison to silver nitrate. Science of the Total Environment, 610, 972–982.

    Article  Google Scholar 

  • Chakraborty, C., Sharma, A. R., Sharma, G., & Lee, S.-S. (2016). Zebrafish: A complete animal model to enumerate the nanoparticle toxicity. Journal of Nanobiotechnology, 14(1), 1–13.

    Article  Google Scholar 

  • Chambers, B. A., Afrooz, A. R. M. N., Bae, S., Aich, N., Katz, L., Saleh, N. B., & Kirisits, M. J. (2014). Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles. Environmental Science & Technology, 48(1), 761–769.

    Article  CAS  Google Scholar 

  • Chen, H., Zhao, R., Wang, B., Cai, C., Zheng, L., Wang, H., et al. (2017). The effects of orally administered Ag, TiO2 and SiO2 nanoparticles on gut microbiota composition and colitis induction in mice. NanoImpact, 8, 80–88. https://doi.org/10.1016/j.impact.2017.07.005

    Article  Google Scholar 

  • Chen, P., Huang, J., Rao, L., Zhu, W., Yu, Y., Xiao, F., et al. (2022). Environmental effects of nanoparticles on the ecological succession of gut microbiota across zebrafish development. Science of The Total Environment, 806, 150963. https://doi.org/10.1016/j.scitotenv.2021.150963

    Article  CAS  Google Scholar 

  • Clearwater, S. J., Farag, A. M., & Meyer, J. S. (2002). Bioavailability and toxicity of dietborne copper and zinc to fish. Comparative Biochemistry and Physiology Part c: Toxicology & Pharmacology, 132(3), 269–313.

    Google Scholar 

  • Couce-Montero, L., Christensen, V., & Castro, J. J. (2015). Effects of small-scale and recreational fisheries on the Gran Canaria ecosystem. Ecological Modelling, 312, 61–76.

    Article  Google Scholar 

  • Cvjetko, P., Milošić, A., Domijan, A.-M., Vinković Vrček, I., Tolić, S., Peharec Štefanić, P., et al. (2017). Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicology and Environmental Safety, 137, 18–28. https://doi.org/10.1016/j.ecoenv.2016.11.009

    Article  CAS  Google Scholar 

  • Dang, F., Huang, Y., Wang, Y., Zhou, D., & Xing, B. (2021). Transfer and toxicity of silver nanoparticles in the food chain. Environmental Science: Nano, 8(6), 1519–1535.

    CAS  Google Scholar 

  • David, M. E., Ion, R.-M., Grigorescu, R. M., Iancu, L., & Andrei, E. R. (2020). Nanomaterials used in conservation and restoration of cultural heritage: An up-to-date overview. Materials (basel, Switzerland), 13(9), 2064. https://doi.org/10.3390/ma13092064

    Article  CAS  Google Scholar 

  • de Lima, R., Seabra, A. B., & Durán, N. (2012). Silver nanoparticles: A brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. Journal of Applied Toxicology, 32(11), 867–879.

    Article  CAS  Google Scholar 

  • Delay, M., Dolt, T., Woellhaf, A., Sembritzki, R., & Frimmel, F. H. (2011). Interactions and stability of silver nanoparticles in the aqueous phase: Influence of natural organic matter (NOM) and ionic strength. Journal of Chromatography A, 1218(27), 4206–4212.

    Article  CAS  Google Scholar 

  • Deshmukh, S. P., Patil, S. M., Mullani, S. B., & Delekar, S. D. (2019). Silver nanoparticles as an effective disinfectant: A review. Materials Science and Engineering: C, 97, 954–965. https://doi.org/10.1016/j.msec.2018.12.102

    Article  CAS  Google Scholar 

  • Devi, G. P., Ahmed, K. B. A., Varsha, M. K. N. S., Shrijha, B. S., Lal, K. K. S., Anbazhagan, V., & Thiagarajan, R. (2015). Sulfidation of silver nanoparticle reduces its toxicity in zebrafish. Aquatic Toxicology, 158, 149–156.

    Article  CAS  Google Scholar 

  • Dinesh, R., Anandaraj, M., Srinivasan, V., & Hamza, S. (2012). Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma, 173, 19–27.

    Article  Google Scholar 

  • Duran, N., & Seabra, A. B. (2018). Biogenic synthesized Ag/Au nanoparticles: Production, characterization, and applications. Current Nanoscience, 14(2), 82–94.

    Article  CAS  Google Scholar 

  • Esakkimuthu, T., Sivakumar, D., & Akila, S. (2014). Application of nanoparticles in wastewater treatment. Pollution Research, 33(03), 567–571.

    CAS  Google Scholar 

  • Ferdous, Z., & Nemmar, A. (2020). Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure. International Journal of Molecular Sciences, 21(7), 2375.

    Article  CAS  Google Scholar 

  • Fletcher, N. D., Lieb, H. C., & Mullaugh, K. M. (2019). Stability of silver nanoparticle sulfidation products. Science of the Total Environment, 648, 854–860.

    Article  CAS  Google Scholar 

  • Flores-Rojas, G. G., López-Saucedo, F., & Bucio, E. (2020). Gamma-irradiation applied in the synthesis of metallic and organic nanoparticles: A short review. Radiation Physics and Chemistry, 169, 107962.

    Article  CAS  Google Scholar 

  • Gambardella, C., Costa, E., Piazza, V., Fabbrocini, A., Magi, E., Faimali, M., & Garaventa, F. (2015). Effect of silver nanoparticles on marine organisms belonging to different trophic levels. Marine Environmental Research, 111, 41–49.

    Article  CAS  Google Scholar 

  • Garg, S., Rong, H., Miller, C. J., & Waite, T. D. (2016). Oxidative dissolution of silver nanoparticles by chlorine: Implications to silver nanoparticle fate and toxicity. Environmental Science & Technology, 50(7), 3890–3896.

    Article  CAS  Google Scholar 

  • Gatti Junior, P. (2015). Efeitos espaço temporais da poluição pontual e não pontual em uma bacia hidrográfica subtropical: ecohidrologia como ferramenta de controle.

  • George, S., Lin, S., Ji, Z., Thomas, C. R., Li, L., Mecklenburg, M., et al. (2012). Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano, 6(5), 3745–3759.

    Article  CAS  Google Scholar 

  • Ghobashy, M., Abd El-Kodous, M., Shabaka, S., Younis, S., Alshangiti, M., Madani, M., et al. (2021). An overview of methods for production and detection of silver nanoparticles, with emphasis on their fate and toxicological effects on human, soil, and aquatic environment. Nanotechnology Reviews, 10. https://doi.org/10.1515/ntrev-2021-0066

  • Gilroy, K. D., Neretina, S., & Sanders, R. W. (2014). Behavior of gold nanoparticles in an experimental algal–zooplankton food chain. Journal of Nanoparticle Research, 16(5), 1–8.

    Article  CAS  Google Scholar 

  • Gómez, G. D., & Balcázar, J. L. (2008). A review on the interactions between gut microbiota and innate immunity of fish. FEMS Immunology & Medical Microbiology, 52(2), 145–154.

    Article  Google Scholar 

  • Griffin, S., Sarfraz, M., Farida, V., Nasim, M. J., Ebokaiwe, A. P., Keck, C. M., & Jacob, C. (2018). No time to waste organic waste: Nanosizing converts remains of food processing into refined materials. Journal of Environmental Management, 210, 114–121.

    Article  Google Scholar 

  • Griffitt, R. J., Weil, R., Hyndman, K. A., Denslow, N. D., Powers, K., Taylor, D., & Barber, D. S. (2007). Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environmental Science & Technology, 41(23), 8178–8186.

    Article  CAS  Google Scholar 

  • Gritz, E. C., & Bhandari, V. (2015). The human neonatal gut microbiome: a brief review. Frontiers in pediatrics, 3, 17.

    Google Scholar 

  • Haghighat, F., Kim, Y., Sourinejad, I., Yu, I. J., & Johari, S. A. (2021). Titanium dioxide nanoparticles affect the toxicity of silver nanoparticles in common carp (Cyprinus carpio). Chemosphere, 262, 127805. https://doi.org/10.1016/j.chemosphere.2020.127805

    Article  CAS  Google Scholar 

  • Hao, L., Chen, L., Hao, J., & Zhong, N. (2013). Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): A comparative study with its bulk counterparts. Ecotoxicology and Environmental Safety, 91, 52–60. https://doi.org/10.1016/j.ecoenv.2013.01.007

    Article  CAS  Google Scholar 

  • Haug, L. S., Thomsen, C., Brantsæter, A. L., Kvalem, H. E., Haugen, M., Becher, G., et al. (2010). u. Environment international, 36(7), 772–778.

    Article  CAS  Google Scholar 

  • Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2015). Fabrication of bio-nanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. Food Hydrocolloids, 44, 172–182.

    Article  CAS  Google Scholar 

  • Howe, K., Clark, M. D., Torroja, C. F., Torrance, J., Berthelot, C., Muffato, M., et al. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature, 496(7446), 498–503.

    Article  CAS  Google Scholar 

  • Hussain, N., Jaitley, V., & Florence, A. T. (2001). Recent advances in the understanding of uptake of. Advanced Drug Delivery Reviews, 50, 107–142.

    Article  CAS  Google Scholar 

  • Ismail, G. A., Allam, N. G., El-Gemizy, W. M., & Salem, M. A. (2020). The role of silver nanoparticles biosynthesized by Anabaena variabilis and Spirulina platensis cyanobacteria for malachite green removal from wastewater. Environmental Technology, 1–15.

  • Jami, M., Ghanbari, M., Kneifel, W., & Domig, K. J. (2015). Phylogenetic diversity and biological activity of culturable Actinobacteria isolated from freshwater fish gut microbiota. Microbiological Research, 175, 6–15. https://doi.org/10.1016/j.micres.2015.01.009

    Article  Google Scholar 

  • Jang, M.-H., Kim, W.-K., Lee, S.-K., Henry, T. B., & Park, J.-W. (2014). Uptake, tissue distribution, and depuration of total silver in common carp (Cyprinus carpio) after aqueous exposure to silver nanoparticles. Environmental Science & Technology, 48(19), 11568–11574. https://doi.org/10.1021/es5022813

    Article  CAS  Google Scholar 

  • Javurek, A. B., Suresh, D., Spollen, W. G., Hart, M. L., Hansen, S. A., Ellersieck, M. R., et al. (2017). Gut dysbiosis and neurobehavioral alterations in rats exposed to silver nanoparticles. Scientific Reports, 7(1), 1–15.

    Article  CAS  Google Scholar 

  • Johari, S. A., Sarkheil, M., Asghari, S., Haghighat, F., Dekani, L., & Keyvanshokooh, S. (2020). Comparative toxicity of nanoparticulate and ionic copper following dietary exposure to common carp (Cyprinus carpio). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 229, 108680. https://doi.org/10.1016/j.cbpc.2019.108680

    Article  CAS  Google Scholar 

  • Jorge de Souza, T. A., Rosa Souza, L. R., & Franchi, L. P. (2019). Silver nanoparticles: An integrated view of green synthesis methods, transformation in the environment, and toxicity. Ecotoxicology and Environmental Safety, 171, 691–700. https://doi.org/10.1016/j.ecoenv.2018.12.095

    Article  CAS  Google Scholar 

  • Joshi, S. C., & Kaushik, U. (2013). Nanoparticles and reproductive toxicity: An overview. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 4, 1396–1410.

    CAS  Google Scholar 

  • Jung, Y.-J., Kim, K.-T., Kim, J. Y., Yang, S.-Y., Lee, B.-G., & Kim, S. D. (2014). Bioconcentration and distribution of silver nanoparticles in Japanese medaka (Oryzias latipes). Journal of Hazardous Materials, 267, 206–213.

    Article  CAS  Google Scholar 

  • Kakakhel, M. A., Wu, F., Sajjad, W., Zhang, Q., Khan, I., Ullah, K., & Wang, W. (2021). Long-term exposure to high-concentration silver nanoparticles induced toxicity, fatality, bioaccumulation, and histological alteration in fish (Cyprinus carpio). Environmental Sciences Europe, 33(1), 14. https://doi.org/10.1186/s12302-021-00453-7

    Article  CAS  Google Scholar 

  • Kakakhel, M. A., Bibi, N., Mahboub, H. H., Wu, F., Sajjad, W., Din, S. Z. U., et al. (2023). Influence of biosynthesized nanoparticles exposure on mortality, residual deposition, and intestinal bacterial dysbiosis in Cyprinus carpio. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 263, 109473. https://doi.org/10.1016/j.cbpc.2022.109473

    Article  CAS  Google Scholar 

  • Kakakhel, M. A., Wu, F., Feng, H., Hassan, Z., Ali, I., Saif, I., et al. (2021). Biological synthesis of silver nanoparticles using animal blood, their preventive efficiency of bacterial species, and ecotoxicity in common carp fish. Microscopy Research and Technique, n/a(n/a). https://doi.org/10.1002/jemt.23733

  • Kashiwada, S. (2006). Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environmental Health Perspectives, 114(11), 1697–1702.

    Article  CAS  Google Scholar 

  • Kaur, A., Preet, S., Kumar, V., Kumar, R., & Kumar, R. (2019). Synergetic effect of vancomycin loaded silver nanoparticles for enhanced antibacterial activity. Colloids and Surfaces b: Biointerfaces, 176, 62–69.

    Article  CAS  Google Scholar 

  • Keller, A. A., McFerran, S., Lazareva, A., & Suh, S. (2013). Global life cycle releases of engineered nanomaterials. Journal of Nanoparticle Research, 15(6), 1–17.

    Article  Google Scholar 

  • Khan, Z., Hussain, J. I., Hashmi, A. A., & AL-Thabaiti, S. A. (2017). Preparation and characterization of silver nanoparticles using aniline. Arabian Journal of Chemistry, 10, S1506–S1511.

    Article  CAS  Google Scholar 

  • Khan, M. S., Qureshi, N. A., Jabeen, F., Shakeel, M., & Asghar, M. S. (2018). Assessment of waterborne amine-coated silver nanoparticle (Ag-NP)-induced toxicity in Labeo rohita by histological and hematological profiles. Biological Trace Element Research, 182(1), 130–139.

    Article  CAS  Google Scholar 

  • Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931.

    Article  CAS  Google Scholar 

  • Khorshidi, Z., Sarvi, K., Imani, A., & Shahryar, B. (2016). The interactive effect of dietary curcumin and silver nanoparticles on gut microbiota of common carp (Cyprinus carpio). Iranian Journal of Science and Technology, Transactions A: Science, 42. https://doi.org/10.1007/s40995-016-0130-8

  • Khosravi-Katuli, K., Shabani, A., Paknejad, H., & Imanpoor, M. R. (2018). Comparative toxicity of silver nanoparticle and ionic silver in juvenile common carp (Cyprinus carpio): Accumulation, physiology and histopathology. Journal of Hazardous Materials, 359, 373–381. https://doi.org/10.1016/j.jhazmat.2018.07.064

    Article  CAS  Google Scholar 

  • Kim, J. S., Yoon, T.-J., Yu, K. N., Kim, B. G., Park, S. J., Kim, H. W., et al. (2006). Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicological Sciences, 89(1), 338–347.

    Article  CAS  Google Scholar 

  • Kim, B., Murayama, M., Colman, B. P., & Hochella, M. F. (2012). Characterization and environmental implications of nano-and larger TiO2 particles in sewage sludge, and soils amended with sewage sludge. Journal of Environmental Monitoring, 14(4), 1128–1136.

    Article  CAS  Google Scholar 

  • Kleiven, M., Rosseland, B. O., Teien, H., Joner, E. J., & Helen Oughton, D. (2018). Route of exposure has a major impact on uptake of silver nanoparticles in Atlantic salmon (Salmo salar). Environmental Toxicology and Chemistry, 37(11), 2895–2903.

    Article  CAS  Google Scholar 

  • Klitzke, S., Metreveli, G., Peters, A., Schaumann, G. E., & Lang, F. (2015). The fate of silver nanoparticles in soil solution—Sorption of solutes and aggregation. Science of the Total Environment, 535, 54–60.

    Article  CAS  Google Scholar 

  • Korani, M., Ghazizadeh, E., Korani, S., Hami, Z., & Mohammadi-Bardbori, A. (2015). Effects of silver nanoparticles on human health. European Journal of Nanomedicine, 7(1), 51–62. https://doi.org/10.1515/ejnm-2014-0032

    Article  CAS  Google Scholar 

  • Kumar, S. S. D., Rajendran, N. K., Houreld, N. N., & Abrahamse, H. (2018). Recent advances on silver nanoparticle and biopolymer-based biomaterials for wound healing applications. International Journal of Biological Macromolecules, 115, 165–175.

    Article  CAS  Google Scholar 

  • Lai, Y., Dong, L., Zhou, H., Yan, B., Chen, Y., Cai, Y., & Liu, J. (2020). Coexposed nanoparticulate Ag alleviates the acute toxicity induced by ionic Ag+ in vivo. Science of the Total Environment, 723, 138050.

    Article  CAS  Google Scholar 

  • Lee, B., Duong, C. N., Cho, J., Lee, J., Kim, K., Seo, Y., et al. (2012). Toxicity of citrate-capped silver nanoparticles in common carp (Cyprinus carpio). Journal of Biomedicine & Biotechnology, 2012, 262670.

    Article  Google Scholar 

  • Levard, C., Hotze, E. M., Lowry, G. V., & Brown, G. E., Jr. (2012). Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environmental Science & Technology, 46(13), 6900–6914.

    Article  CAS  Google Scholar 

  • Levard, Clément., Mitra, S., Yang, T., Jew, A. D., Badireddy, A. R., Lowry, G. V., & Brown, G. E., Jr. (2013). Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environmental science & technology, 47(11), 5738–5745.

    Article  CAS  Google Scholar 

  • Li, Y., Qin, T., Ingle, T., Yan, J., He, W., Yin, J.-J., & Chen, T. (2017). Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Archives of Toxicology, 91(1), 509–519.

    Article  CAS  Google Scholar 

  • Liu, J. Y., Sonshine, D. A., Shervani, S., & Hurt, R. H. (2010). Controlled release of biologically active silver from nanosilver surfaces. ACS Nano, 4(11), 6903.

    Article  CAS  Google Scholar 

  • Ma, Y., Song, L., Lei, Y., Jia, P., Lu, C., Wu, J., et al. (2018). Sex dependent effects of silver nanoparticles on the zebrafish gut microbiota. Environmental Science: Nano, 5(3), 740–751.

    CAS  Google Scholar 

  • Mahmoud, U. M., Mekkawy, I. A. A., Naguib, M., & Sayed, A.E.-D.H. (2019). Silver nanoparticle–induced nephrotoxicity in Clarias gariepinus: Physio-histological biomarkers. Fish Physiology and Biochemistry, 45(6), 1895–1905. https://doi.org/10.1007/s10695-019-00686-7

    Article  CAS  Google Scholar 

  • Mansour, W. A. A., Abdelsalam, N. R., Tanekhy, M., Khaled, A. A., & Mansour, A. T. (2021). Toxicity, inflammatory and antioxidant genes expression, and physiological changes of green synthesis silver nanoparticles on Nile tilapia (Oreochromis niloticus) fingerlings. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 247, 109068. https://doi.org/10.1016/j.cbpc.2021.109068

    Article  CAS  Google Scholar 

  • Márquez, J. C. M., Partida, A. H., del Carmen, M., Dosta, M., Mejía, J. C., & Martínez, J. A. B. (2018). Silver nanoparticles applications (AgNPS) in aquaculture. International Journal of Fisheries and Aquatic Studies, 6(2), 5–11.

    Google Scholar 

  • Mattsson, K., Johnson, E. V., Malmendal, A., Linse, S., Hansson, L.-A., & Cedervall, T. (2017). Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Scientific Reports, 7(1), 11452. https://doi.org/10.1038/s41598-017-10813-0

    Article  CAS  Google Scholar 

  • McGillicuddy, E., Murray, I., Kavanagh, S., Morrison, L., Fogarty, A., Cormican, M., et al. (2017). Silver nanoparticles in the environment: Sources, detection and ecotoxicology. Science of the Total Environment, 575, 231–246.

    Article  CAS  Google Scholar 

  • Meng, X.-L., Li, S., Qin, C.-B., Zhu, Z.-X., Hu, W.-P., Yang, L.-P., et al. (2018). Intestinal microbiota and lipid metabolism responses in the common carp (Cyprinus carpio L.) following copper exposure. Ecotoxicology and Environmental Safety, 160, 257–264. https://doi.org/10.1016/j.ecoenv.2018.05.050

    Article  CAS  Google Scholar 

  • Mihranyan, A., Ferraz, N., & Strømme, M. (2012). Current status and future prospects of nanotechnology in cosmetics. Progress in Materials Science, 57(5), 875–910.

    Article  CAS  Google Scholar 

  • Mohana, A. A., Farhad, S. M., Haque, N., & Pramanik, B. K. (2021). Understanding the fate of nano-plastics in wastewater treatment plants and their removal using membrane processes. Chemosphere, 284, 131430. https://doi.org/10.1016/j.chemosphere.2021.131430

    Article  CAS  Google Scholar 

  • Montalban-Arques, A., De Schryver, P., Bossier, P., Gorkiewicz, G., Mulero, V., Gatlin, D. M., & Galindo-Villegas, J. (2015). Selective manipulation of the gut microbiota improves immune status in vertebrates. Frontiers in Immunology. https://www.frontiersin.org/article/10.3389/fimmu.2015.00512

  • Morris, J., Willis, J., De Martinis, D., Hansen, B., Laursen, H., Sintes, J. R., et al. (2011). Science policy considerations for responsible nanotechnology decisions. Nature Nanotechnology, 6(2), 73–77.

    Article  CAS  Google Scholar 

  • Mukherjee, T., Chakraborty, S., Biswas, A. A., & Das, T. K. (2017). Bioremediation potential of arsenic by non-enzymatically biofabricated silver nanoparticles adhered to the mesoporous carbonized fungal cell surface of Aspergillus foetidus MTCC8876. Journal of Environmental Management, 201, 435–446.

    Article  CAS  Google Scholar 

  • Naguib, M., Mahmoud, U. M., Mekkawy, I. A., & Sayed, A.E.-D.H. (2020). Hepatotoxic effects of silver nanoparticles on Clarias gariepinus; biochemical, histopathological, and histochemical studies. Toxicology Reports, 7, 133–141. https://doi.org/10.1016/j.toxrep.2020.01.002

    Article  CAS  Google Scholar 

  • Nasretdinova, G. R., Fazleeva, R. R., Mukhitova, R. K., Nizameev, I. R., Kadirov, M. K., Ziganshina, A. Y., & Yanilkin, V. V. (2015). Electrochemical synthesis of silver nanoparticles in solution. Electrochemistry Communications, 50, 69–72.

    Article  CAS  Google Scholar 

  • Nayeri, D., & Mousavi, S. A. (2020). Dye removal from water and wastewater by nanosized metal oxides-modified activated carbon: A review on recent researches. Journal of Environmental Health Science and Engineering, 1–19.

  • Ng, S. H., Stat, M., Bunce, M., & Simmons, L. W. (2018). The influence of diet and environment on the gut microbial community of field crickets. Ecology and Evolution, 8(9), 4704–4720. https://doi.org/10.1002/ece3.3977

    Article  Google Scholar 

  • Odzak, N., Kistler, D., & Sigg, L. (2017). Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments. Environmental Pollution, 226, 1–11.

    Article  CAS  Google Scholar 

  • Park, M. V. D. Z., Neigh, A. M., Vermeulen, J. P., de la Fonteyne, L. J. J., Verharen, H. W., Briedé, J. J., et al. (2011). The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials, 32(36), 9810–9817.

    Article  CAS  Google Scholar 

  • Pašukonienė, V., Mlynska, A., Steponkienė, S., Poderys, V., Matulionytė, M., Karabanovas, V., et al. (2014). Accumulation and biological effects of cobalt ferrite nanoparticles in human pancreatic and ovarian cancer cells. Medicina, 50(4), 237–244. https://doi.org/10.1016/j.medici.2014.09.009

    Article  Google Scholar 

  • Patsiou, D., del Rio-Cubilledo, C., Catarino, A. I., Summers, S., Mohd Fahmi, A., Boyle, D., et al. (2020). Exposure to Pb-halide perovskite nanoparticles can deliver bioavailable Pb but does not alter endogenous gut microbiota in zebrafish. Science of The Total Environment, 715, 136941. https://doi.org/10.1016/j.scitotenv.2020.136941

    Article  CAS  Google Scholar 

  • Perez, L., Scarcello, E., Ibouraadaten, S., Yakoub, Y., Leinardi, R., Ambroise, J., et al. (2021). Dietary nanoparticles alter the composition and function of the gut microbiota in mice at dose levels relevant for human exposure. Food and Chemical Toxicology, 154, 112352. https://doi.org/10.1016/j.fct.2021.112352

    Article  CAS  Google Scholar 

  • Persoone, G., Baudo, R., Cotman, M., Blaise, C., Thompson, K. C., Moreira-Santos, M., et al. (2009). Review on the acute Daphnia magna toxicity test–Evaluation of the sensitivity and the precision of assays performed with organisms from laboratory cultures or hatched from dormant eggs. Knowledge and Management of Aquatic Ecosystems, 393, 1.

    Article  Google Scholar 

  • Piao, M. J., Kang, K. A., Lee, I. K., Kim, H. S., Kim, S., Choi, J. Y., et al. (2011). Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicology Letters, 201(1), 92–100.

    Article  CAS  Google Scholar 

  • “Plenty of room” revisited. (2009). Nature Nanotechnology, 4(12), 781. https://doi.org/10.1038/nnano.2009.356

  • Poursorkhabi, V., Abdelwahab, M. A., Misra, M., Khalil, H., Gharabaghi, B., & Mohanty, A. K. (2020). Processing, carbonization, and characterization of lignin based electrospun carbon fibers: A review. Frontiers in Energy Researchhttps://www.frontiersin.org/articles/10.3389/fenrg.2020.00208

  • Pradas del Real, A. E., Castillo-Michel, H., Kaegi, R., Sinnet, B., Magnin, V., Findling, N., et al. (2016). Fate of Ag-NPs in sewage sludge after application on agricultural soils. Environmental Science & Technology, 50(4), 1759–1768.

    Article  CAS  Google Scholar 

  • Pubo, C., Jie, H., Liuyu, R., Wengen, Z., Yuhe, Y., Fanshu, X., et al. (2021). Resistance and resilience of fish gut microbiota to silver nanoparticles. mSystems, 6(5), e00630-21. https://doi.org/10.1128/mSystems.00630-21

    Article  Google Scholar 

  • Pulit-Prociak, J., & Banach, M. (2016). Silver nanoparticles–A material of the future…? Open Chemistry, 14(1), 76–91.

    Article  CAS  Google Scholar 

  • Reyes-Estebanez, M., Ortega-Morales, B. O., Chan-Bacab, M., Granados-Echegoyen, C., Camacho-Chab, J. C., Pereañez-Sacarias, J. E., & Gaylarde, C. (2018). Antimicrobial engineered nanoparticles in the built cultural heritage context and their ecotoxicological impact on animals and plants: A brief review. Heritage Science, 6(1), 52.

    Article  Google Scholar 

  • Rolim, W. R., Pelegrino, M. T., de Araújo Lima, B., Ferraz, L. S., Costa, F. N., Bernardes, J. S., et al. (2019). Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Applied Surface Science, 463, 66–74.

    Article  CAS  Google Scholar 

  • Rosenman, K. D., Moss, A., & Kon, S. (1979). Argyria: Clinical implications of exposure to silver nitrate and silver oxide. Journal of occupational medicine.: official publication of the Industrial Medical Association, 21(6), 430–435.

    CAS  Google Scholar 

  • Sambale, F., Wagner, S., Stahl, F., Khaydarov, R. R., Scheper, T., & Bahnemann, D. (2015). Investigations of the toxic effect of silver nanoparticles on mammalian cell lines. Journal of Nanomaterials, 2015, 136765. https://doi.org/10.1155/2015/136765

    Article  CAS  Google Scholar 

  • Sanchez, L. M., Wong, W. R., Riener, R. M., Schulze, C. J., & Linington, R. G. (2012). Examining the fish microbiome: Vertebrate-derived bacteria as an environmental niche for the discovery of unique marine natural products. PLoS ONE, 7(5), e35398.

    Article  CAS  Google Scholar 

  • Satalkar, P., Elger, B. S., & Shaw, D. M. (2016). Defining nano, nanotechnology and nanomedicine: Why should it matter? Science and Engineering Ethics, 22(5), 1255–1276.

    Article  Google Scholar 

  • Sayed, A.E.-D.H., & Soliman, H. A. M. (2017). Developmental toxicity and DNA damaging properties of silver nanoparticles in the catfish (Clarias gariepinus). Mutation Research/genetic Toxicology and Environmental Mutagenesis, 822, 34–40. https://doi.org/10.1016/j.mrgentox.2017.07.002

    Article  CAS  Google Scholar 

  • Sharma, V. K., Filip, J., Zboril, R., & Varma, R. S. (2015). Natural inorganic nanoparticles–Formation, fate, and toxicity in the environment. Chemical Society Reviews, 44(23), 8410–8423.

    Article  CAS  Google Scholar 

  • Sharma, V. K., Sayes, C. M., Guo, B., Pillai, S., Parsons, J. G., Wang, C., et al. (2019). Interactions between silver nanoparticles and other metal nanoparticles under environmentally relevant conditions: A review. Science of the Total Environment, 653, 1042–1051.

    Article  CAS  Google Scholar 

  • Singhal, A., & Gupta, A. (2018). Efficient utilization of Sal deoiled seed cake (DOC) as reducing agent in synthesis of silver nanoparticles: Application in treatment of dye containing wastewater and harnessing reusability potential for cost-effectiveness. Journal of Molecular Liquids, 268, 691–699. https://doi.org/10.1016/j.molliq.2018.07.092

    Article  CAS  Google Scholar 

  • Smita, S., Gupta, S. K., Bartonova, A., Dusinska, M., Gutleb, A. C., & Rahman, Q. (2012). Nanoparticles in the environment: Assessment using the causal diagram approach. Environmental Health, 11(1), S13. https://doi.org/10.1186/1476-069X-11-S1-S13

    Article  Google Scholar 

  • Sohn, E. K., Kim, T. G., Kim, J. K., Kim, E., Lee, J. H., et al. (2015). Aquatic toxicity comparison of silver nanoparticles and silver nanowires. BioMed Research International, 2015, 893049. https://doi.org/10.1155/2015/893049

    Article  CAS  Google Scholar 

  • Song, L., Vijver, M. G., Peijnenburg, W. J. G. M., Galloway, T. S., & Tyler, C. R. (2015). A comparative analysis on the in vivo toxicity of copper nanoparticles in three species of freshwater fish. Chemosphere, 139, 181–189. https://doi.org/10.1016/j.chemosphere.2015.06.021

    Article  CAS  Google Scholar 

  • Syafiuddin, A., Salim, M. R., Kueh, B. H., & A., Hadibarata, T., & Nur, H. (2017). A review of silver nanoparticles: Research trends, global consumption, synthesis, properties, and future challenges. Journal of the Chinese Chemical Society, 64(7), 732–756.

    Article  CAS  Google Scholar 

  • Taju, G., Abdul Majeed, S., Nambi, K. S. N., & Sahul Hameed, A. S. (2014). In vitro assay for the toxicity of silver nanoparticles using heart and gill cell lines of Catla catla and gill cell line of Labeo rohita. Comparative Biochemistry and Physiology Part c: Toxicology & Pharmacology, 161, 41–52. https://doi.org/10.1016/j.cbpc.2014.01.007

    Article  CAS  Google Scholar 

  • Talwar, C., Nagar, S., Lal, R., & Negi, R. K. (2018). Fish gut microbiome: Current approaches and future perspectives. Indian Journal of Microbiology, 58(4), 397–414. https://doi.org/10.1007/s12088-018-0760-y

    Article  CAS  Google Scholar 

  • Temizel-Sekeryan, S., & Hicks, A. L. (2020). Global environmental impacts of silver nanoparticle production methods supported by life cycle assessment. Resources, Conservation and Recycling, 156, 104676.

    Article  Google Scholar 

  • Teow, Y., Asharani, P. V., Hande, M. P., & Valiyaveettil, S. (2011). Health impact and safety of engineered nanomaterials. Chemical Communications, 47(25), 7025–7038.

    Article  CAS  Google Scholar 

  • Tortella, G. R., Rubilar, O., Durán, N., Diez, M. C., Martínez, M., Parada, J., & Seabra, A. B. (2020). Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment. Journal of Hazardous Materials, 390, 121974. https://doi.org/10.1016/j.jhazmat.2019.121974

    Article  CAS  Google Scholar 

  • Tsang, S. C., Yu, C. H., Gao, X., & Tam, K. (2006). Metal nanoparticle encapsulated in oxide. The Journal of Physical Chemistry B, 110, 16914–16922.

    Article  CAS  Google Scholar 

  • Valant, J., Drobne, D., & Novak, S. (2012). Effect of ingested titanium dioxide nanoparticles on the digestive gland cell membrane of terrestrial isopods. Chemosphere, 87(1), 19–25.

    Article  CAS  Google Scholar 

  • Vali, S., Mohammadi, G., Tavabe, K. R., Moghadas, F., & Naserabad, S. S. (2020). The effects of silver nanoparticles (Ag-NPs) sublethal concentrations on common carp (Cyprinus carpio): Bioaccumulation, hematology, serum biochemistry and immunology, antioxidant enzymes, and skin mucosal responses. Ecotoxicology and Environmental Safety, 194, 110353. https://doi.org/10.1016/j.ecoenv.2020.110353

    Article  CAS  Google Scholar 

  • Valodkar, M., Jadeja, R. N., Thounaojam, M. C., Devkar, R. V., & Thakore, S. (2011). In vitro toxicity study of plant latex capped silver nanoparticles in human lung carcinoma cells. Materials Science and Engineering: C, 31(8), 1723–1728. https://doi.org/10.1016/j.msec.2011.08.001

    Article  CAS  Google Scholar 

  • Van Den Brink, N. W., Kokalj, A. J., Silva, P. V., Lahive, E., Norrfors, K., Baccaro, M., et al. (2019). Tools and rules for modelling uptake and bioaccumulation of nanomaterials in invertebrate organisms. Environmental Science: Nano, 6(7), 1985–2001.

    Google Scholar 

  • van den Brule, S., Ambroise, J., Lecloux, H., Levard, C., Soulas, R., De Temmerman, P.-J., et al. (2016). Dietary silver nanoparticles can disturb the gut microbiota in mice. Particle and Fibre Toxicology, 13(1), 38. https://doi.org/10.1186/s12989-016-0149-1

    Article  CAS  Google Scholar 

  • Wang, E., Huang, Y., Du, Q., & Sun, Y. (2017). Silver nanoparticle induced toxicity to human sperm by increasing ROS (reactive oxygen species) production and DNA damage. Environmental Toxicology and Pharmacology, 52, 193–199. https://doi.org/10.1016/j.etap.2017.04.010

    Article  CAS  Google Scholar 

  • Wang, F., Guan, W., Xu, L., Ding, Z., Ma, H., Ma, A., & Terry, N. (2019). Effects of nanoparticles on algae: Adsorption, distribution, ecotoxicity and fate. Applied Sciences. https://doi.org/10.3390/app9081534

    Article  Google Scholar 

  • Wimmer, A., Kalinnik, A., & Schuster, M. (2018). New insights into the formation of silver-based nanoparticles under natural and semi-natural conditions. Water Research, 141, 227–234.

    Article  CAS  Google Scholar 

  • Xiang, Q.-Q., Gao, Y., Li, Q.-Q., Ling, J., & Chen, L.-Q. (2020). Proteomic profiling reveals the differential toxic responses of gills of common carp exposed to nanosilver and silver nitrate. Journal of Hazardous Materials, 394, 122562. https://doi.org/10.1016/j.jhazmat.2020.122562

    Article  CAS  Google Scholar 

  • Xiao, F., Zhu, W., Yu, Y., He, Z., Wu, B., Wang, C., et al. (2021). Host development overwhelms environmental dispersal in governing the ecological succession of zebrafish gut microbiota. npj Biofilms and Microbiomes, 7(1), 5. https://doi.org/10.1038/s41522-020-00176-2

    Article  Google Scholar 

  • Xiu, Z.-M., Ma, J., & Alvarez, P. J. J. (2011). Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environmental Science & Technology, 45(20), 9003–9008. https://doi.org/10.1021/es201918f

    Article  CAS  Google Scholar 

  • Xu, J., Bjursell, M. K., Himrod, J., Deng, S., Carmichael, L. K., Chiang, H. C., et al. (2003). A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science, 299(5615), 2074–2076.

    Article  CAS  Google Scholar 

  • Yan, Q., Li, J., Yu, Y., Wang, J., He, Z., Van Nostrand, J. D., et al. (2016). Environmental filtering decreases with fish development for the assembly of gut microbiota. Environmental Microbiology, 18(12), 4739–4754.

    Article  CAS  Google Scholar 

  • Yang, S., Ye, R., Han, B., Wei, C., & Yang, X. (2014). Ecotoxicological effect of nano-silicon dioxide particles on Daphnia magna. Integrated Ferroelectrics, 154(1), 64–72.

    Article  CAS  Google Scholar 

  • Yang, H.-T., Zou, S.-S., Zhai, L.-J., Wang, Y., Zhang, F.-M., An, L.-G., & Yang, G.-W. (2017). Pathogen invasion changes the intestinal microbiota composition and induces innate immune responses in the zebrafish intestine. Fish & Shellfish Immunology, 71, 35–42.

    Article  CAS  Google Scholar 

  • Yang, Y., Xu, S., Xu, G., Liu, R., Xu, A., Chen, S., & Wu, L. (2019). Effects of ionic strength on physicochemical properties and toxicity of silver nanoparticles. Science of the Total Environment, 647, 1088–1096.

    Article  CAS  Google Scholar 

  • Yang, T.-T., Liu, Y., Tan, S., Wang, W.-X., & Wang, X. (2021). The role of intestinal microbiota of the marine fish (Acanthopagrus latus) in mercury biotransformation. Environmental Pollution, 277, 116768. https://doi.org/10.1016/j.envpol.2021.116768

    Article  CAS  Google Scholar 

  • Yu, S., Yin, Y., & Liu, J. (2013). Silver nanoparticles in the environment. Environmental Science: Processes & Impacts, 15(1), 78–92.

    Google Scholar 

  • Yue, Y., Behra, R., Sigg, L., Fernandez Freire, P., Pillai, S., & Schirmer, K. (2015). Toxicity of silver nanoparticles to a fish gill cell line: Role of medium composition. Nanotoxicology, 9(1), 54–63.

    Article  CAS  Google Scholar 

  • Zhang, C., Hu, Z., & Deng, B. (2016a). Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms. Water Research, 88, 403–427.

    Article  CAS  Google Scholar 

  • Zhang, C., Hu, Z., Li, P., & Gajaraj, S. (2016b). Governing factors affecting the impacts of silver nanoparticles on wastewater treatment. Science of the Total Environment, 572, 852–873.

    Article  CAS  Google Scholar 

  • Zhao, Y., Fan, M., Zhou, W., Li, Y., Wang, Y., Xiu, Z., & Gao, B. (2021). Speciation, controlling steps and pathways of silver release from the sludge generated from coagulation of wastewater spiked with silver nanoparticles. Chemosphere, 282, 131093. https://doi.org/10.1016/j.chemosphere.2021.131093

    Article  CAS  Google Scholar 

  • Zhu, X., Wang, J., Zhang, X., Chang, Y., & Chen, Y. (2010). Trophic transfer of TiO2 nanoparticles from daphnia to zebrafish in a simplified freshwater food chain. Chemosphere, 79(9), 928–933.

    Article  CAS  Google Scholar 

  • Zuin, S., Gaiani, M., Ferrari, A., & Golanski, L. (2014). Leaching of nanoparticles from experimental water-borne paints under laboratory test conditions. Journal of Nanoparticle Research, 16(1), 1–17.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Ali Bahadur from the Chinese Academy of Sciences, China, for his constructive help in editing and revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mian Adnan Kakakhel.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaheer Ud Din, S., Shah, K., Bibi, N. et al. Recent Insights into the Silver Nanomaterials: an Overview of Their Transformation in the Food Webs and Toxicity in the Aquatic Ecosystem. Water Air Soil Pollut 234, 114 (2023). https://doi.org/10.1007/s11270-023-06134-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06134-w

Keywords

Navigation