Skip to main content
Log in

Differential genotoxicity mechanisms of silver nanoparticles and silver ions

  • Genotoxicity and Carcinogenicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

In spite of many reports on the toxicity of silver nanoparticles (AgNPs), the mechanisms underlying the toxicity are far from clear. A key question is whether the observed toxicity comes from the silver ions (Ag+) released from the AgNPs or from the nanoparticles themselves. In this study, we explored the genotoxicity and the genotoxicity mechanisms of Ag+ and AgNPs. Human TK6 cells were treated with 5 nM AgNPs or silver nitrate (AgNO3) to evaluate their genotoxicity and induction of oxidative stress. AgNPs and AgNO3 induced cytotoxicity and genotoxicity in a similar range of concentrations (1.00–1.75 µg/ml) when evaluated using the micronucleus assay, and both induced oxidative stress by measuring the gene expression and reactive oxygen species in the treated cells. Addition of N-acetylcysteine (NAC, an Ag+ chelator) to the treatments significantly decreased genotoxicity of Ag+, but not AgNPs, while addition of Trolox (a free radical scavenger) to the treatment efficiently decreased the genotoxicity of both agents. In addition, the Ag+ released from the highest concentration of AgNPs used for the treatment was measured. Only 0.5 % of the AgNPs were ionized in the culture medium and the released silver ions were neither cytotoxic nor genotoxic at this concentration. Further analysis using electron spin resonance demonstrated that AgNPs produced hydroxyl radicals directly, while AgNO3 did not. These results indicated that although both AgNPs and Ag+ can cause genotoxicity via oxidative stress, the mechanisms are different, and the nanoparticles, but not the released ions, mainly contribute to the genotoxicity of AgNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242:263–269. doi:10.1016/j.taap.2009.10.016

    Article  CAS  PubMed  Google Scholar 

  • Asharani PV, Hande MP, Valiyaveettil S (2009) Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 10:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asharani P, Sethu S, Lim HK, Balaji G, Valiyaveettil S, Hande MP (2012) Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells. Genome Integr 3:2. doi:10.1186/2041-9414-3-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY (2009) Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5:1897–1910. doi:10.1002/smll.200801716

    Article  CAS  PubMed  Google Scholar 

  • Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H (2012) Toxicity of silver nanoparticles—nanoparticle or silver ion? Toxicol Lett 208:286–292

    Article  CAS  PubMed  Google Scholar 

  • Bouwmeester H et al (2011) Characterization of translocation of silver nanoparticles and effects on whole-genome gene expression using an in vitro intestinal epithelium coculture model. ACS Nano 5:4091–4103. doi:10.1021/nn2007145

    Article  CAS  PubMed  Google Scholar 

  • Bragg PD, Rainnie DJ (1974) The effect of silver ions on the respiratory chain of Escherichia coli. Can J Microbiol 20:883–889

    Article  CAS  PubMed  Google Scholar 

  • Brigelius-Flohe R, Kipp A (2009) Glutathione peroxidases in different stages of carcinogenesis. Biochim Biophys Acta 1790:1555–1568. doi:10.1016/j.bbagen.2009.03.006

    Article  CAS  PubMed  Google Scholar 

  • Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28:580–588

    Article  CAS  PubMed  Google Scholar 

  • Cherian MG, Goyer RA (1978) Methallothioneins and their role in the metabolism and toxicity of metals. Life Sci 23:1–9

    Article  CAS  PubMed  Google Scholar 

  • Choi O, Deng KK, Kim NJ, Ross L Jr, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074. doi:10.1016/j.watres.2008.02.021

    Article  CAS  PubMed  Google Scholar 

  • Cronholm P et al (2013) Intracellular uptake and toxicity of Ag and CuO nanoparticles: a comparison between nanoparticles and their corresponding metal ions. Small 9:970–982. doi:10.1002/smll.201201069

    Article  CAS  PubMed  Google Scholar 

  • Demir E, Vales G, Kaya B, Creus A, Marcos R (2011) Genotoxic analysis of silver nanoparticles in Drosophila. Nanotoxicology 5:417–424

    Article  CAS  PubMed  Google Scholar 

  • Dubas ST, Pimpan V (2008) Humic acid assisted synthesis of silver nanoparticles and its application to herbicide detection. Mater Lett 62:2661–2663

    Article  CAS  Google Scholar 

  • Eliopoulos P, Mourelatos D (1998) Lack of genotoxicity of silver iodide in the SCE assay in vitro, in vivo, and in the Ames/microsome test. Teratog Carcinog Mutagen 18:303–308. doi:10.1002/(SICI)1520-6866(1998)

    Article  CAS  PubMed  Google Scholar 

  • Eom HJ, Choi J (2010) p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol 44:8337–8342

    Article  CAS  PubMed  Google Scholar 

  • Foldbjerg R, Irving ES, Hayashi Y, Sutherland DS, Thorsen K, Autrup H, Beer C (2012) Global gene expression profiling of human lung epithelial cells after exposure to nanosilver. Toxicol Sci 130:145–157. doi:10.1093/toxsci/kfs225

    Article  CAS  PubMed  Google Scholar 

  • Formigari A, Irato P, Santon A (2007) Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: biochemical and cytochemical aspects. Comp Biochem Physiol C Toxicol Pharmacol 146:443–459

    Article  PubMed  Google Scholar 

  • Gonzalez L, Lison D, Kirsch-Volders M (2008) Genotoxicity of engineered nanomaterials: a critical review. Nanotoxicology 2:252–273

    Article  Google Scholar 

  • Gorman AM, Heavey B, Creagh E, Cotter TG, Samali A (1999) Antioxidant-mediated inhibition of the heat shock response leads to apoptosis. FEBS Lett 445:98–102. doi:10.1016/S0014-5793(99)00094-0

  • Gulbranson SH, Hud JA, Hansen RC (2000) Argyria following the use of dietary supplements containing colloidal silver protein. Cutis 66:373–376

    CAS  PubMed  Google Scholar 

  • He W, Zhou YT, Wamer WG, Boudreau MD, Yin JJ (2012) Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 33:7547–7555. doi:10.1016/j.biomaterials.2012.06.076

    Article  CAS  PubMed  Google Scholar 

  • He W, Liu Y, Wamer WG, Yin JJ (2014) Electron spin resonance spectroscopy for the study of nanomaterial-mediated generation of reactive oxygen species. J Food Drug Anal 22:49–63. doi:10.1016/j.jfda.2014.01.004

    Article  CAS  PubMed  Google Scholar 

  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983. doi:10.1016/j.tiv.2005.06.034

    Article  CAS  PubMed  Google Scholar 

  • Kawata K, Osawa M, Okabe S (2009) In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 43:6046–6051

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, Ryu DY (2009) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro 23:1076

    Article  CAS  PubMed  Google Scholar 

  • Kittler S, Greulich C, Köller M, Epple M (2009) Synthesis of PVP-coated silver nanoparticles and their biological activity towards human mesenchymal stem cells. Materialwiss Werkstofftech 40:258–264

    Article  CAS  Google Scholar 

  • Kumari MVR, Hiramatsu M, Ebadi M (1998) Free radical scavenging actions of metallothionein isoforms I and II. Free Radical Res 29:93–101

    Article  CAS  Google Scholar 

  • Kvitek L et al (2009) Initial study on the toxicity of silver nanoparticles (NPs) against Paramecium caudatum. J Phys Chem C 113:4296–4300

    Article  CAS  Google Scholar 

  • Li Y, Chen T (2014) Genotoxicity of silver nanoparticles. In: Sahu SC (ed) Handbook of nanotoxology, nanomedicne and stem cells. Wiley, Hoboken, pp 87–98

    Google Scholar 

  • Li Y et al (2012) Genotoxicity of silver nanoparticles evaluated using the Ames test and in vitro micronucleus assay. Mutat Res 745:4–10

    Article  CAS  PubMed  Google Scholar 

  • Li Y et al (2014) Cytotoxicity and genotoxicity assessment of silver nanoparticles in mouse. Nanotoxicology 8:36–45

    Article  PubMed  Google Scholar 

  • Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175. doi:10.1021/es9035557

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4:6903–6913. doi:10.1021/nn102272n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubick N (2008) Nanosilver toxicity: ions, nanoparticles–or both? Environ Sci Technol 42:8617

    Article  CAS  PubMed  Google Scholar 

  • Marshall JP 2nd, Schneider RP (1977) Systemic argyria secondary to topical silver nitrate. Arch Dermatol 113:1077–1079

    Article  PubMed  Google Scholar 

  • McShan D, Ray PC, Yu H (2014) Molecular toxicity mechanism of nanosilver. J Food Drug Anal 22:116–127. doi:10.1016/j.jfda.2014.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mei N et al (2012) Silver nanoparticle-induced mutations and oxidative stress in mouse lymphoma cells. Environ Mol Mutagen 53:409–419. doi:10.1002/em.21698

    Article  CAS  PubMed  Google Scholar 

  • Messner KR, Imlay JA (1999) The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli. J Biol Chem 274:10119–10128

    Article  CAS  PubMed  Google Scholar 

  • Meyer JN et al (2010) Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat Toxicol 100:140–150. doi:10.1016/j.aquatox.2010.07.016

    Article  CAS  PubMed  Google Scholar 

  • Miao AJ, Schwehr KA, Xu C, Zhang SJ, Luo Z, Quigg A, Santschi PH (2009) The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut 157:3034–3041. doi:10.1016/j.envpol.2009.05.047

    Article  CAS  PubMed  Google Scholar 

  • Navarro E et al (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964

    Article  CAS  PubMed  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  • OECD (2014) In vitro Mammalian Cell Micronucleus Test (Mnvit). OECD Guideline for Testing of Chemicals No. 487

  • Peng D et al (2012) Glutathione peroxidase 7 protects against oxidative DNA damage in oesophageal cells. Gut 61:1250–1260. doi:10.1136/gutjnl-2011-301078

    Article  CAS  PubMed  Google Scholar 

  • Petersen EJ, Nelson BC (2010) Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA. Anal Bioanal Chem 398:613–650. doi:10.1007/s00216-010-3881-7

    Article  CAS  PubMed  Google Scholar 

  • Rahman MF et al (2009) Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol Lett 187:15–21. doi:10.1016/j.toxlet.2009.01.020

    Article  CAS  PubMed  Google Scholar 

  • Schins RP, Knaapen AM (2007) Genotoxicity of poorly soluble particles. Inhal Toxicol 19(Suppl 1):189–198. doi:10.1080/08958370701496202

    Article  CAS  PubMed  Google Scholar 

  • Schrand AM, Braydich-Stolle LK, Schlager JJ, Dai L, Hussain SM (2008) Can silver nanoparticles be useful as potential biological labels? Nanotechnology 19:235104

    Article  PubMed  Google Scholar 

  • Shelley WB, Shelley ED, Burmeister V (1987) Argyria: the intradermal “photograph,” a manifestation of passive photosensitivity. J Am Acad Dermatol 16:211–217

    Article  CAS  PubMed  Google Scholar 

  • Sládková M, Vlčková B, Pavel I, Šišková K, Šlouf M (2009) Surface-enhanced Raman scattering from a single molecularly bridged silver nanoparticle aggregate. J Mol Struct 924:567–570

    Article  Google Scholar 

  • Smyth PP (2003) Role of iodine in antioxidant defence in thyroid and breast disease. BioFactors 19:121–130

    Article  CAS  PubMed  Google Scholar 

  • Tsui MT, Wang WX (2007) Biokinetics and tolerance development of toxic metals in Daphnia magna. Environ Toxicol Chem 26:1023–1032

    Article  CAS  PubMed  Google Scholar 

  • Xiu ZM, Ma J, Alvarez PJJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45:9003–9008

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Takemura T, Xu M, Hanagata N (2011) Toxicity of silver nanoparticles as assessed by global gene expression analysis. Mater Express 1:74–79

    Article  Google Scholar 

  • Yang J et al (2009) Interaction between antitumor drug and silver nanoparticles: combined fluorescence and surface enhanced Raman scattering study. Chin Opt Lett 7:894–897

    Article  CAS  Google Scholar 

  • Yang X, Gondikas AP, Marinakos SM, Auffan M, Liu J, Hsu-Kim H, Meyer JN (2011) Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46:1119–1127

    Article  PubMed  Google Scholar 

  • Yin L et al (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–2367

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Barbara Berman for editorial assistance. Y. L., T. I. and T. Q. were supported by the appointment to the Postgraduate Research Program at the National Center for Toxicological Research administered by the Oak Ridge Institute for Science Education through an interagency agreement between the US Department of Energy and the US FDA. This research was partially supported by a regulatory science grant from the FDA Nanotechnology CORES Program. This article is not an official US Food and Drug Administration (FDA) guidance or policy statement. No official support or endorsement by the US FDA is intended or should be inferred.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Qin, T., Ingle, T. et al. Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Arch Toxicol 91, 509–519 (2017). https://doi.org/10.1007/s00204-016-1730-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1730-y

Keywords

Navigation