Skip to main content
Log in

New trends in removing heavy metals from wastewater

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

With the development of researches, the treatments of wastewater have reached a certain level. Whereas, heavy metals in wastewater cause special concern in recent times due to their recalcitrance and persistence in the environment. Therefore, it is important to get rid of the heavy metals in wastewater. The previous studies have provided many alternative processes in removing heavy metals from wastewater. This paper reviews the recent developments and various methods for the removal of heavy metals from wastewater. It also evaluates the advantages and limitations in application of these techniques. A particular focus is given to innovative removal processes including adsorption on abiological adsorbents, biosorption, and photocatalysis. Because these processes have leaded the new trends and attracted more and more researches in removing heavy metals from wastewater due to their high efficency, pluripotency and availability in a copious amount. In general, the applicability, characteristic of wastewater, cost-effectiveness, and plant simplicity are the key factors in selecting the most suitable method for the contaminated wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdel Salam OE, Reiad NA, ElShafei MM (2011) A study of the removal characteristics of heavy metals from wastewater by low-cost adsorbents. J Adv Res 2(4):297–303

  • Agrawal A, Sahu KK (2006) Kinetic and isotherm studies of cadmium adsorption on manganese nodule residue. J Hazard Mater 137(2):915–924

    Article  CAS  PubMed  Google Scholar 

  • Ahmad AL, Ooi BS (2010) A study on acid reclamation and copper recovery using low pressure nanofiltration membrane. Chem Eng J 156(2):257–263

    Article  CAS  Google Scholar 

  • Ahmad M, Usman ARA, Lee SS, Kim SC, Joo JH, Yang JE, Yong SO (2012) Eggshell and coral wastes as low cost sorbents for the removal of Pb2+, Cd2+ and Cu2+ from aqueous solutions. J Ind Eng Chem 18(1):198–204

    Article  CAS  Google Scholar 

  • Akpomie KG, Dawodu FA, Adebowale KO (2015) Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential. Alex Eng J 54(3):757–767

    Article  Google Scholar 

  • Ayuso AE, Sánchez GA, Querol X (2003) Purification of metal electroplating waste waters using zeolites. Water Res 37(20):4855–4862

    Article  CAS  Google Scholar 

  • Alyüz B, Veli S (2009) Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. J Hazard Mater 167(1–3):482–488

    Article  PubMed  CAS  Google Scholar 

  • Aziz HA, Adlan MN, Ariffin KS (2008) Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr (III)) removal from water in Malaysia: post treatment by high quality limestone. Bioresour Technol 99(6):1578–1583

    Article  CAS  PubMed  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377

    Article  CAS  Google Scholar 

  • Barakat MA, Chen YT, Huang CP (2004) Removal of toxic cyanide and Cu (II) Ions from water by illuminated TiO2 catalyst. Appl Catal B Environ 53(1):13–20

    Article  CAS  Google Scholar 

  • Barakat MA, Schmidt E (2010) Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater. Desalination 256(1–3):90–93

    Article  CAS  Google Scholar 

  • Bediako JK, Wei W, Kim S, Yun YS (2015) Removal of heavy metals from aqueous phases using chemically modified waste Lyocell fiber. J Hazard Mater 299:550–561

    Article  CAS  PubMed  Google Scholar 

  • Bilal M, Shah JA, Ashfaq T, Gardazi SMH, Tahir AA, Pervez A, Haroon H, Mahmood Q (2013) Waste biomass adsorbents for copper removal from industrial wastewater—a review. J Hazard Mater 263:322–333

    Article  CAS  PubMed  Google Scholar 

  • Cavaco SA, Fernandes S, Quina MM, Ferreira LM (2007) Removal of chromium from electroplating industry effluents by ion exchange resins. J Hazard Mater 144(3):634–638

    Article  CAS  PubMed  Google Scholar 

  • Chen CL, Hu J, Shao DD, Li JX, Wang XK (2009) Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni (II) and Sr (II). J Hazard Mater 164(2–3):923–928

    Article  CAS  PubMed  Google Scholar 

  • Chen GH (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38(1):11–41

    Article  CAS  Google Scholar 

  • Chiang YW, Ghyselbrecht K, Santos RM, Martens JA, Swennen R, Cappuyns V, Meesschaert B (2012) Adsorption of multi-heavy metals onto water treatment residuals: sorption capacities and applications. Chem Eng J 200-202:405–415

    Article  CAS  Google Scholar 

  • Cifuentes L, García I, Arriagada P, Casas JM (2009) The use of electrodialysis for metal separation and water recovery from CuSO4-H2SO4-Fe solutions. Sep Purif Technol 68(1):105–108

    Article  CAS  Google Scholar 

  • Cséfalvay E, Pauer V, Mizsey P (2009) Recovery of copper from process waters by nanofiltration and reverse osmosis. Desalination 240(1–3):132–142

    Article  CAS  Google Scholar 

  • Deliyanni EA, Peleka EN, Matis KA (2009) Modeling the sorption of metal ions from aqueous solution by iron-based adsorbents. J Hazard Mater 172(2–3):550–558

    Article  CAS  PubMed  Google Scholar 

  • Doula MK (2009) Simultaneous removal of Cu, Mn and Zn from drinking water with the use of clinoptilolite and its Fe-modified form. Water Res 43(15):3659–3672

    Article  CAS  PubMed  Google Scholar 

  • Doula MK, Dimirkou A (2008) Use of an iron-overexchanged clinoptilolite for the removal of Cu2+ ions from heavily contaminated drinking water samples. J Hazard Mater 151(2–3):738–745

    Article  CAS  PubMed  Google Scholar 

  • Eren E, Tabak A, Eren B (2010) Performance of magnesium oxide-coated bentonite in removal process of copper ions from aqueous solution. Desalination 257(1–3):163–169

    Article  CAS  Google Scholar 

  • Ertugay N, Bayhan YK (2010) The removal of copper (II) ion by using mushroom biomass (Agaricus bisporus) and kinetic modelling. Desalination 255(1–3):137–142

    Article  CAS  Google Scholar 

  • Figoli A, Cassano A, Criscuoli A, Mozumder MSI, Uddin MT, Islam MA, Drioli E (2010) Influence of operating parameters on the arsenic removal by nanofiltration. Water Res 44(1):97–104

    Article  CAS  PubMed  Google Scholar 

  • Fu FL, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418

    Article  CAS  Google Scholar 

  • Gabr RM, Hassan SHA, Shoreit AAM (2008) Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a. Int Biodeterior Biodegrad 62(2):195–203

    Article  CAS  Google Scholar 

  • Glatstein DA, Francisca FM (2015) Influence of pH and ionic strength on Cd, Cu and Pb removal from water by adsorption in Na-bentonite. Appl Clay Sci 118:61–67

    Article  CAS  Google Scholar 

  • Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P (2009) Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res 43(9):2317–2348

    Article  CAS  PubMed  Google Scholar 

  • Grover VA, Hu JX, Engates KE, Shipley HJ (2012) Adsorption and desorption of bivalent metals to hematite nanoparticles. Environ Toxicol Chem 31(1):86–92

    Article  CAS  PubMed  Google Scholar 

  • Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38(1):43–74

    Article  CAS  Google Scholar 

  • Hegazi HA (2013) Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC J 9(3):276–282

    Article  Google Scholar 

  • Hossain MA, Ngo HH, Guo WS, Nguyen TV (2012) Palm oil fruit shells as biosorbent for copper removal from water and wastewater: Experiments and sorption models. Bioresour Technol 113:97–101

    Article  CAS  PubMed  Google Scholar 

  • Hu PY, Hsieh YH, Chen JC, Chang CY (2004) Characteristics of manganese-coated sand using SEM and EDAX analysis. J Colloid Interface Sci 272(2):308–313

    Article  CAS  PubMed  Google Scholar 

  • Hua M, Zhang SJ, Pan BC, Zhang WM, Lv L, Zhang QX (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211-212:317–331

    Article  CAS  PubMed  Google Scholar 

  • Ideriah TJK, David OD, Ogbonna DN (2012) Removal of heavy metal ions in aqueous solutions using palm fruit fibre as adsorbent. J Environ Chem Ecotoxicol 4:82–90

    CAS  Google Scholar 

  • Inglezakis VJ, Loizidou MD, Grigoropoulou HP (2002) Equilibrium and kinetic ion exchange studies of Pb2+, Cr3+, Fe3+ and Cu2+ on natural clinoptilolite. Water Res 36(11):2784–2792

    Article  CAS  PubMed  Google Scholar 

  • Ipek U (2005) Removal of Ni (II) and Zn (II) from an aqueous solutionby reverse osmosis. Desalination 174(2):161–169

    Article  CAS  Google Scholar 

  • Issabayeva G, Aroua MK, Sulaiman NM (2010) Study on palm shell activated carbon adsorption capacity to remove copper ions from aqueous solutions. Desalination 262(1–3):94–98

    Article  CAS  Google Scholar 

  • Jabłońska B, Siedlecka E (2015) Removing heavy metals from wastewaters with use of shales accompanying the coal beds. J Environ Manag 155:58–66

    Article  CAS  Google Scholar 

  • Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400(1–3):396–414

  • Kang SY, Lee JU, Moon SH, Kim KW (2004) Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater. Chemosphere 56(2):141–147

    Article  CAS  PubMed  Google Scholar 

  • Khedr MG (2008) Membrane methods in tailoring simpler, more efficient, and cost effective wastewater treatment alternatives. Desalination 222(1–3):135–145

    Article  CAS  Google Scholar 

  • Kim HJ, Baek K, Kim BK, Yang JW (2005) Humic substance-enhanced ultrafiltration for removal of cobalt. J Hazard Mater 122(1–2):31–36

    Article  CAS  PubMed  Google Scholar 

  • Koseoglu H, Kitis M (2009) The recovery of silver from mining wastewaters using hybrid cyanidation and high-pressure membrane process. Miner Eng 22(5):440–444

    Article  CAS  Google Scholar 

  • Kumar PS, Ramalingam S, Abhinaya RV, Kirupha SD, Murugesan A, Sivanesan S (2012) Adsorption of metal ions onto the chemically modified agricultural waste. CLEAN-Soil Air Water 40(2):188–197

    Article  CAS  Google Scholar 

  • Kurniawan TA, Chan GYS, Lo WH, Babel S (2006a) Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Sci Total Environ 366(2–3):409–426

    Article  CAS  PubMed  Google Scholar 

  • Kurniawan TA, Chan GYS, Lo WH, Babel S (2006b) Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118(1–2):83–98

    Article  CAS  Google Scholar 

  • Lambert J, Avila-Rodriguez M, Durand G, Rakib M (2006) Separation of sodium ions from trivalent chromium by electrodialysis using monovalent cation selective membranes. J Membr Sci 280(1–2):219–225

    Article  CAS  Google Scholar 

  • Landaburu AJ, García V, Pongrácz E, Keiski RL (2009) The removal of zinc from synthetic wastewaters by micellar-enhanced ultrafiltration: statistical design of experiments. Desalination 240(1–3):262–269

    Article  CAS  Google Scholar 

  • Lee JC, Son YO, Pratheeshkumar P, Shi XL (2012) Oxidative stress and metal carcinogenesis. Free Radic Biol Med 53(4):742–757

    Article  CAS  PubMed  Google Scholar 

  • Leila Chebil A, Lassaad C (2009) Biosorption of Cu2+ and Zn2+ from aqueous solutions by dried marine green macroalga Chaetomorpha linum. J Environ Manag 90(11):3485–3489

  • Lim AP, Aris AZ (2014) A review on economically adsorbents on heavy metals removal in water and wastewater. Rev Environ Sci Biotechnol 13(2):163–181

    Article  CAS  Google Scholar 

  • Liu BJ, Wang DF, Yu GL, Meng XH (2013) Adsorption of heavy metal ions, dyes and proteins by chitosan composites and derivatives-A review. J Ocean Univ China 12(3):500–508

    Article  CAS  Google Scholar 

  • Liu FN, Zhang GL, Meng Q, Zhang HZ (2008) Performance of nanofiltration and reverse osmosis membranes in metal effluent treatment. Chin J Chem Eng 16(3):441–445

    Article  Google Scholar 

  • Liu GC, Yu SL, Yang HJ, Hu J, Zhang Y, He B, Li L, Liu ZY (2016) Molecular mechanisms of ultrafiltration membrane fouling in polymer-flooding wastewater treatment: role of ions in polymeric fouling. Environ Sci Technol 50(3):1393–1402

    Article  CAS  PubMed  Google Scholar 

  • Liu QS, Zheng T, Li N, Wang P, Abulikemu G (2010) Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue. Appl Surf Sci 256(10):3309–3315

    Article  CAS  Google Scholar 

  • Luo XG, Zeng J, Liu SL, Zhang LN (2015) An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system: magnetic chitosan/cellulose microspheres. Bioresour Technol 194:403–406

    Article  CAS  PubMed  Google Scholar 

  • Lv JW, Wang KY, Chung TS (2008) Investigation of amphoteric polybenzimidazole (PBI) nanofiltration hollow fiber membrane for both cation and anions removal. J Membr Sci 310(1–2):557–566

    Article  CAS  Google Scholar 

  • Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11(3):843–872

    Article  CAS  Google Scholar 

  • Martín-Lara MA, Blázquez G, Trujillo MC, Pérez A, Calero M (2014) New treatment of real electroplating wastewater containing heavy metal ions by adsorption onto olive stone. J Clean Prod 81:120–129

  • Matouq M, Jildeh N, Qtaishat M, Hindiyeh M, Al Syouf MQ (2015) The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa pods. J Environ Chem Eng 3(2):775–784

    Article  CAS  Google Scholar 

  • Mirbagheri SA, Hosseini SN (2005) Pilot plant investigation on petrochemical wastewater treatment for the removal of copper and chromium with the objective of reuse. Desalination 171(1):85–93

    Article  CAS  Google Scholar 

  • Miretzky P, Cirelli AF (2009) Hg (II) removal from water by chitosan and chitosan derivatives: a review. J Hazard Mater 167(1–3):10–23

    Article  CAS  PubMed  Google Scholar 

  • Mishra V (2014) Biosorption of zinc ion: a deep comprehension. Appl Water Sci 4(4):311–332

    Article  CAS  Google Scholar 

  • Mohammadi T, Moheb A, Sadrzadeh M, Razmi A (2004) Separation of copper ions by electrodialysis using Taguchi experimental design. Desalination 169(1):21–31

    Article  CAS  Google Scholar 

  • Mohammadi T, Moheb A, Sadrzadeh M, Razmi A (2005) Modeling of metal ion removal from wastewater by electrodialysis. Sep Purif Technol 41(1):73–82

    Article  CAS  Google Scholar 

  • Mohsen-Nia M, Montazeri P, Modarress H (2007) Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes. J Am Chem Soc 217(1–3):276–281

  • Molinari R, Poerio T, Argurio P (2008) Selective separation of copper (II) and nickel (II) from aqueous media using the complexation–ultrafiltration process. Chemosphere 70(3):341–348

    Article  CAS  PubMed  Google Scholar 

  • Mondal DK, Nandi BK, Purkait MK (2013) Removal of mercury (II) from aqueous solution using bamboo leaf powder: equilibrium, thermodynamic and kinetic studies. J Environ Chem Eng 1(4):891–898

    Article  CAS  Google Scholar 

  • Motsi T, Rowson NA, Simmons MJH (2009) Adsorption of heavy metals from acid mine drainage by natural zeolite. Int J Miner Process 92(1–2):42–48

    Article  CAS  Google Scholar 

  • Murthy ZVP, Chaudhari LB (2008) Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters. J Hazard Mater 160(1):70–77

    Article  CAS  PubMed  Google Scholar 

  • Muthukrishnan M, Guha BK (2008) Effect of pH on rejection of hexavalent chromium by nanofiltration. Desalination 219(1–3):171–178

    Article  CAS  Google Scholar 

  • Muzzarelli RAA (2011) Potential of chitin/chitosan-bearing materials for uranium recovery: an interdisciplinary review. Carbohydr Polym 84(1):54–63

    Article  CAS  Google Scholar 

  • O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99(15):6709–6724

    Article  PubMed  CAS  Google Scholar 

  • Ostroski IC, Barros MASD, Silva EA, Dantas JH, Arroyo PA, Lima OCM (2009) A comparative study for the ion exchange of Fe (III) and Zn (II) on zeolite NaY. J Hazard Mater 161(2–3):1404–1412

    Article  CAS  PubMed  Google Scholar 

  • Otsu J, Oshima Y (2005) New approaches to the preparation of metal or metal oxide particles on the surface of porous materials using supercritical water. J Supercrit Fluids 33(1):61–67

    CAS  Google Scholar 

  • Özverdi A, Erdem M (2006) Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide. J Hazard Mater 137(1):626–632

    Article  PubMed  CAS  Google Scholar 

  • Pan BJ, Pan BC, Zhang WM, Lv L, Zhang QX, Zheng SR (2009) Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chem Eng J 151(1–3):19–29

    Article  CAS  Google Scholar 

  • Pan BJ, Qiu H, Pan BC, Nie GZ, Xiao LL, Lv L, Zhang WM, Zhang QX, Zheng SR (2010) Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe (III) oxides: Behavior and XPS study. Water Res 44(3):815–824

    Article  CAS  PubMed  Google Scholar 

  • Papadam T, Xekoukoulotakis NP, Poulios I, Mantzavinos D (2007) Photocatalytic transformation of acid orange 20 and Cr (VI) in aqueous TiO2 suspensions. J Photochem Photobiol A Chem 186(2–3):308–315

    Article  CAS  Google Scholar 

  • Pehlivan E, Altun T, Parlayici S (2012) Modified barley straw as a potential biosorbent for removal of copper ions from aqueous solution. Food Chem 135(4):2229–2234

    Article  CAS  PubMed  Google Scholar 

  • Pettinato M, Chakraborty S, Arafat HA, Calabro' V (2015) Eggshell: a green adsorbent for heavy metal removal in an MBR system. Ecotoxicol Environ Saf 121:57–62

    Article  CAS  PubMed  Google Scholar 

  • Phetphaisit CW, Yuanyang S, Chaiyasith WC (2016) Polyacrylamido-2-methyl-1-propane sulfonic acid-grafted-natural rubber as bio-adsorbent for heavy metal removal from aqueous standard solution and industrial wastewater. J Hazard Mater 301:163–171

    Article  CAS  PubMed  Google Scholar 

  • Quintelas C, Rocha Z, Silva B, Fonseca B, Figueiredo H, Tavares T (2009) Biosorptive performance of an Escherichia coli biofilm supported on zeolite NaY for the removal of Cr (VI), Cd (II), Fe (III) and Ni (II). Chem Eng J 152(1):110–115

    Article  CAS  Google Scholar 

  • Rajfur M, Kłos A, Wacławek M (2011) Sorption of copper (II) ions in the biomass of alga Spirogyra sp. Bioelectrochemistry 87:65–70

    Article  PubMed  CAS  Google Scholar 

  • Rani MJ, Hemambika B, Hemapriya J, Kannan VR (2010) Comparative assessment of heavy metal removal by immobilized and dead bacterial cells: a biosorption approach. Afr J Environ Sci Technol 4(2):77–83

    Google Scholar 

  • Rengaraj S, Venkataraj S, Yeon JW, Kim YH, Li XZ, Pang GKH (2007) Preparation, characterization and application of Nd-TiO2 photocatalyst for the reduction of Cr (VI) under UV light illumination. Appl Catal B Environ 77(1–2):157–165

    Article  CAS  Google Scholar 

  • Samper E, Rodríguez M, Rubia MADL, Rico PD (2009) Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS). Sep Purif Technol 65(3):337–342

    Article  CAS  Google Scholar 

  • Senthilkumar P, Ramalingam S, Sathyaselvabala V, Kirupha SD, Sivanesan S (2011) Removal of copper (II) ions from aqueous solution by adsorption using cashew nut shell. Desalination 266(1–3):63–71

    Article  CAS  Google Scholar 

  • Singh A, Kumar D, Gaur JP (2008) Removal of Cu (II) and Pb (II) by Pithophora oedogonia: sorption, desorption and repeated use of the biomass. J Hazard Mater 152(3):1011–1019

    Article  CAS  PubMed  Google Scholar 

  • Srivastava NK, Majumder CB (2008) Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J Hazard Mater 151(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Su Q, Pan BC, Pan BJ, Zhang QR, Zhang WM, Lv L, Wang XS, Wu J, Zhang QX (2009) Fabrication of polymer-supported nanosized hydrous manganese dioxide (HMO) for enhanced lead removal from waters. Sci Total Environ 407(21):5471–5477

    Article  CAS  PubMed  Google Scholar 

  • Syukor ARA, Sulaiman S, Siddique MNI, Zularisam AW, Said MIM (2016) Integration of phytogreen for heavy metal removal from wastewater. J Clean Prod 112:3124–3131

    Article  CAS  Google Scholar 

  • Taffarel SR, Rubio J (2009) On the removal of Mn2+ ions by adsorption onto natural and activated Chilean zeolites. Miner Eng 22(4):336–343

    Article  CAS  Google Scholar 

  • Tekin S, Hasen C, Nurettin S, Nahit A (2010) Optimization of removal conditions of copper ions from aqueous solutions by Trametes versicolor. Bioresour Technol 101(12):4520–4526

  • Troca-Torrado C, Alexandre-Franco M, Fernández-González C, Alfaro-Domínguez M, Gómez-Serrano V (2011) Development of adsorbents from used tire rubber: their use in the adsorption of organic and inorganic solutes in aqueous solution. Fuel Process Technol 92(2):206–212

    Article  CAS  Google Scholar 

  • Tsekova K, Todorova D, Dencheva V, Ganeva S (2010) Biosorption of copper (II) and cadmium (II) from aqueous solutions by free and immobilized biomass of Aspergillus niger. Bioresour Technol 101(6):1727–1731

    Article  CAS  PubMed  Google Scholar 

  • Vhahangwele M, Gitari W (2015) The potential of ball-milled South African bentonite clay for attenuation of heavy metals from acidic wastewaters: simultaneous sorption of Co2+, Cu2+, Ni2+, Pb2+, and Zn2+ ions. J Environ Chem Eng 3(4):2416–2425

    Article  CAS  Google Scholar 

  • Vijayalakshmi A, Arockiasamy DL, Nagendran A, Mohan D (2008) Separation of proteins and toxic heavy metal ions from aqueous solution by CA/PC blend ultrafiltration membranes. Sep Purif Technol 62(1):32–38

    Article  CAS  Google Scholar 

  • Vilar VJP, Botelho CMS, Boaventura RAR (2008) Copper removal by algae Gelidium, agar extraction algal waste and granulated algal waste: kinetics and equilibrium. Bioresour Technol 99(4):750–762

    Article  CAS  PubMed  Google Scholar 

  • Visa M, Chelaru AM (2014) Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment. Appl Surf Sci 303:14–22

    Article  CAS  Google Scholar 

  • Wan Ngah WS, Teong LC, Hanafiah MAKM (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83(4):1446–1456

  • Wang JL, Chen C (2014) Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour Technol 160:129–141

    Article  CAS  PubMed  Google Scholar 

  • Wang JH, Zheng SR, Shao Y, Liu JL, Xu ZY, Zhu DQ (2010) Amino-functionalized Fe3O4-SiO2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interface Sci 349(1):293–299

    Article  CAS  PubMed  Google Scholar 

  • Wang LM, Wang N, Zhu LH, Yu HW, Tang HQ (2008) Photocatalytic reduction of Cr (VI) over different TiO2 photocatalysts and the effects of dissolved organic species. J Hazard Mater 152(1):93–99

    Article  CAS  PubMed  Google Scholar 

  • Wu FC, Tseng RL, Juang RS (2010) A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals. J Environ Manag 91(4):798–806

    Article  CAS  Google Scholar 

  • Xie LP, Fu FL, Tang B (2012) Research progress in the treatment of complex heavy metal wastewater. Ind Water Treat 32(8):1–5

    CAS  Google Scholar 

  • Xu P, Zeng GM, Huang DL, Hu S, Feng CL, Lai C, Zhao MH, Huang C, Li NJ, Wei Z, Xie GX (2013) Synthesis of iron oxide nanoparticles and their application in Phanerochaete chrysosporium immobilization for Pb (II) removal. Colloids Surf A Physicochem Eng Asp 419:147–155

    Article  CAS  Google Scholar 

  • Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX (2012a) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424(4):1–10

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Zeng GM, Huang DL, Lai C, Zhao MH, Wei Z, Li NJ, Huang C, Xie GX (2012b) Adsorption of Pb (II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: equilibrium, kinetic, thermodynamic and mechanisms analysis. Chem Eng J 203(5):423–431

    Article  CAS  Google Scholar 

  • Yoon JY, Shim EJ, Bae SY, Joo HYK (2009) Application of immobilized nanotubular TiO2 electrode for photocatalytic hydrogen evolution: reduction of hexavalent chromium (Cr (VI)) in water. J Hazard Mater 161(2–3):1069–1074

    Article  CAS  PubMed  Google Scholar 

  • Yu HJ, Wu JH, Fan LQ, Lin YZ, Chen SH, Chen Y, Wang JL, Huang ML, Lin JM, Lan Z, Huang YF (2012) Application of a novel redox-active electrolyte in MnO2-based supercapacitors. SCIENCE CHINA Chem 55(7):1319–1324

    Article  CAS  Google Scholar 

  • Zeng GM, Li X, Huang JH, Zhang C, Zhou CF, Niu J, Shi LJ, He SB, Li F (2011) Micellar-enhanced ultrafiltration of cadmium and methylene blue in synthetic wastewater using SDS. J Hazard Mater 185(2–3):1304–1310

    Article  CAS  PubMed  Google Scholar 

  • Zeng GM, Zhao MH, Huang DL, Lai C, Huang C, Wei Z, Xu P, Li NJ, Zhang C, Li FL, Cheng M (2013) Purification and biochemical characterization of two extracellular peroxidases from Phanerochaete chrysosporium responsible for lignin biodegradation. Int Biodeterior Biodegrad 85:166–172

    Article  CAS  Google Scholar 

  • Zeng YG, Li L (2014) Study on Treatment of Heavy Metal Ions of Chemical Wastewater by Ion Exchange Resin. Adv Mater Res 955-959:2230

    Article  CAS  Google Scholar 

  • Zhang CS, Zhang SQ, Zhang LQ, Rong HW, Zhang KF (2015) Effects of constant pH and unsteady pH at different free ammonia concentrations on shortcut nitrification for landfill leachate treatment. Appl Microbiol Biotechnol 99(8):3707–3713

    Article  CAS  PubMed  Google Scholar 

  • Zhang FS, Hideaki I (2006) Photocatalytic oxidation and removal of arsenite from water using slag-iron oxide-TiO2 adsorbent. Chemosphere 65(65):125–131

    Article  CAS  PubMed  Google Scholar 

  • Zhang SN, Cheng FY, Tao ZL, Gao F, Chen J (2006) Removal of nickel ions from wastewater by Mg(OH)2/MgO nanostructures embedded in Al2O3 membranes. J Alloys Compd 426(1–2):281–285

    Article  CAS  Google Scholar 

  • Zhang LN, Wu YJ, Qu XY, Li ZS, Ni JR (2009) Mechanism of combination membrane and electro-winning process on treatment and remediation of Cu2+ polluted water body. J Environ Sci 21(6):764–769

    Article  CAS  Google Scholar 

  • Zhao MH, Zeng ZT, Zeng GM, Huang DL, Feng C, Lai C, Huang C, Wei Z, Li NJ, Xu P, Zhang C, Liu ZF, Xie GX (2012) Effects of ratio of manganese peroxidase to lignin peroxidase on transfer of ligninolytic enzymes in different composting substrates. Biochem Eng J 67(2):132–139

    Article  CAS  Google Scholar 

  • Zhao MH, Zhang CS, Zeng GM, Huang DL, Xu P, Cheng M (2015) Growth, metabolism of Phanerochaete chrysosporium and route of lignin degradation in response to cadmium stress in solid-state fermentation. Chemosphere 138:560–567

    Article  CAS  PubMed  Google Scholar 

  • Zhu YH, Hu J, Wang JL (2012) Competitive adsorption of Pb (II), Cu (II) and Zn (II) onto xanthate-modified magnetic chitosan. J Hazard Mater 221-222:155–161

    Article  CAS  PubMed  Google Scholar 

  • Zuo WR, Zhang GL, Meng Q, Zhang HZ (2008) Characteristics and application of multiple membrane process in plating wastewater reutilization. Desalination 222(1–3):187–196

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the National Natural Science Foundation of China (21477027), the Science and Technology Planning Project of Guangdong Province (2014 A020216048), and the China Postdoctoral Science Foundation (2015 M582363).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaosheng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

The article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Xu, Y., Zhang, C. et al. New trends in removing heavy metals from wastewater. Appl Microbiol Biotechnol 100, 6509–6518 (2016). https://doi.org/10.1007/s00253-016-7646-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7646-x

Keyword

Navigation