Skip to main content
Log in

Lectin-Modified Cryogels for Laccase Immobilization: a Decolorization Study

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this presented work, poly(2-hydroxyethyl methacrylate-glycidyl methacrylate) [p(HEMA-GMA)] cryogels were prepared by using the radicalic cryopolymerization technique, and then modified with lectin protein ConA. These ConA functionalized cryogels were used for the immobilization of laccase, and enzyme loading was found to be as 7.1 mg/g cryogel. Finally, these laccase immobilized cryogels were successfully used for the decolorization of six different types of dye molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bertrand, G. (1985). Sur la laccase et sur le pouvoir oxydant de cette diastase. Comptes Rendus. Académie des Sciences (Paris), 120, 266–269.

    Google Scholar 

  • Champagne, P. P., & Ramsay, J. A. (2010). Dye decolorization and detoxification by laccase immobilized on porous glass beads. Bioresource Technology, 101, 2230–2235.

    CAS  Google Scholar 

  • Claus, H., Faber, G., & König, H. (2002). Redox-mediated decolorization of synthetic dyes by fungal laccases. Applied Microbiology and Biotechnology, 59, 672–678.

    CAS  Google Scholar 

  • Dainiak, M. B., Galaev, I. Y., Kumar, A., Plieva, F. M., & Mattiasson, B. (2007). Chromatography of living cells using supermacroporous hydrogels, cryogels. In A. Kumar, I. Y. Galaev, & B. Mattiasson (Eds.), Cell separation. Advances in Biochemical Engineering/Biotechnology, vol 106. Berlin: Springer.

    Google Scholar 

  • Dogan, T., Bayram, E., Uzun, L., Şenel, S., & Denizli, A. (2015). Trametes versicolor laccase immobilized poly(glycidyl methacrylate) based cryogels for phenol degradation from aqueous media. Journal of Applied Polymer Science, 132, 41981.

    Google Scholar 

  • Duran, N., Rosa, M. A., D’Annibale, A., & Gianfreda, L. (2002). Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme and Microbial Technology, 31, 907–931.

    CAS  Google Scholar 

  • Erkurt, A. E., Ünyayar, A., & Kumbur, H. (2007). Decolorization of synthetic dyes by white rot fungi, involving laccase enzyme in the process. Process Biochemistry, 42, 1429–1435.

    CAS  Google Scholar 

  • Fernandez-Fernandez, M., Sanroman, M. A., & Moldes, D. (2013). Recent developments and applications of immobilized laccase. Biotechnology Advances, 31, 1808–1825.

    CAS  Google Scholar 

  • Giardina, P., Faraco, V., Pezzell, C., Piscitelli, A., Vanhulle, S., & Sannia, G. (2010). Laccases: a never-ending story. Cellular and Molecular Life Sciences, 67, 369–385.

    CAS  Google Scholar 

  • Kandelbauer, A., Maute, O., Kessler, R. W., Erlacher, A., & Gübitz, G. M. (2004). Study of dye decolorization in an immobilized laccase enzyme-reactor using online spectroscopy. Biotechnology and Bioengineering, 87, 552–563.

    CAS  Google Scholar 

  • Kiristi, M., Singh, V. V., de Ávila, B. E. F., Uygun, M., Soto, F., Uygun, D. A., et al. (2015). Lysozyme-based antibacterial nanomotors. ACS Nano, 9, 9252–9259.

    CAS  Google Scholar 

  • Kunamneni, A., Ghazi, I., Camarero, S., Ballesteros, A., Plou, F. J., & Alcalde, M. (2008). Decolorization of synthetic dyes by laccase immobilized on epoxy-activated carriers. Process Biochemistry, 43, 169–178.

    CAS  Google Scholar 

  • Leonowicz, A., Cho, N. S., Luterek, J., Wilkolazka, A., Wojtas-Wasilewska, M., Matuszewska, A., et al. (2001). Fungal laccase: properties and activity on lignin. Journal of Basic Microbiology, 41, 185–227.

    CAS  Google Scholar 

  • Lin, S. H., & Peng, F. C. (1994). Treatment of textile wastewater by electrochemical method. Water Research, 28, 277–282.

    CAS  Google Scholar 

  • Lin, S. H., & Peng, F. C. (1996). Continuous treatment of textile wastewater by combined coagulation, electrochemical oxidation and activated sludge. Water Research, 30, 587–592.

    CAS  Google Scholar 

  • Liu, Y., Zeng, Z., Zeng, G., Tang, T., Pang, Y., Li, Z., et al. (2012). Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds. Bioresource Technology, 115, 21–26.

    CAS  Google Scholar 

  • Lozinsky, V. I., Galaev, I. Y., Plieva, F. M., Savina, I. N., Jungvid, H., & Mattiasson, B. (2003). Polymeric cryogels as promising materials of biotechnological interest. Trends in Biotechnology, 21, 445–451.

    CAS  Google Scholar 

  • Lu, L., Zhao, M., & Wang, Y. (2007). Immobilization of laccase by alginate–chitosan microcapsules and its use in dye decolorization. World Journal of Microbiology and Biotechnology, 23, 159–166.

    CAS  Google Scholar 

  • Marmion, D. M. (1991) Handbook of US colorants. Foods, drugs, cosmetics and medical devices. 3rd ed. Wiley, New York.

  • Mayer, A. M., & Staples, R. C. (2002). Laccase: new functions for an old enzyme. Phytochemistry, 60, 551–565.

    CAS  Google Scholar 

  • Mechichi, T., Mhiri, N., & Sayadi, S. (2006). Remazol Brilliant Blue R decolourization by the laccase from Trametes trogii. Chemosphere, 64, 998–1005.

  • Minussi, R. C., Pastore, G. M., & Duran, N. (2002). Potential applications of laccase in the food industry. Trends in Food Science & Technology, 13, 205–216.

    CAS  Google Scholar 

  • Moreira, M. T., Mielgo, I., Feijoo, G., & Lema, J. M. (2000). Evaluation of different fungal strains in the decolourisation of synthetic dyes. Biotechnology Letters, 22, 1499–1503.

    CAS  Google Scholar 

  • Murugesan, K., Dhamija, A., Nam, I. H., Kim, Y. M., & Chang, Y. S. (2007a). Decolourization of reactive black 5 by laccase: optimization by response surface methodology. Dyes and Pigments, 75, 176–184.

    CAS  Google Scholar 

  • Murugesan, K., Nam, I. H., Kim, Y. M., & Chang, Y. S. (2007b). Decolorization of reactive dyes by a thermostable laccase produced by Ganoderma lucidum in solid state culture. Enzyme and Microbial Technology, 40, 1662–1672.

    CAS  Google Scholar 

  • Murugesan, K., Kim, Y. M., Jeon, J. R., & Chang, Y. S. (2009). Effect of metal ions on reactive dye decolorization by laccase from Ganoderma lucidum. Journal of Hazardous Materials, 168, 523–529.

    CAS  Google Scholar 

  • Nieto, M., Nardecchia, S., Peinado, C., Catalina, F., Abrusci, C., Gutiérrez, M. C., et al. (2010). Enzyme-induced graft polymerization for preparation of hydrogels: synergetic effect of laccase-immobilized-cryogels for pollutants adsorption. Soft Matter, 6, 3533–3540.

    CAS  Google Scholar 

  • Nishizawa, Y., Nakabayashi, K., & Shinagawa, E. (1995). Purification and characterization of laccase from white rot fungus Trametes sanguinea M85-2. Journal of Fermentation and Bioengineering, 80, 91–93.

    CAS  Google Scholar 

  • Peralta-Zamora, P., Pereira, C. M., Tiburtius, E. R. L., Moraes, S. G., Rosa, M.A., Minussi, R. C, et al. (2003). Decolorization of reactive dyes by immobilized laccase. Applied Catalysis B: Environmental, 42, 131–144.

  • Ping, W., Xuerong, F. A., Li, C. U., Qiang, W. A., & Aihui, Z. H. (2008). Decolorization of reactive dyes by laccase immobilized in alginate/gelatin blend with PEG. Journal of Environmental Sciences, 20, 1519–1522.

    Google Scholar 

  • Silva, C., Silva, C. S., Zille, A., Guebitz, G. M., & Cavaco-Paulo, A. (2007). Laccase immobilization on enzymatically functionalized polyamide 6, 6 fibers. Enzyme and Microbial Technology, 41, 867–875.

    CAS  Google Scholar 

  • Soares, G. M. B., Costa-Ferreira, M., & de Amorim, M. T. P. (2001). Decolorization of an anthraquinone-type dye using a laccase formulation. Bioresearch Technology, 79, 171–177.

    CAS  Google Scholar 

  • Spinelli, D., Fatarella, E., Michele, A. D., & Pogni, R. (2013). Immobilization of fungal (Trametes versicolor) laccase onto Amberlite IR-120 H beads: optimization and characterization. Process Biochemistry, 48, 218–223.

    CAS  Google Scholar 

  • Stanescu, M. D., Fogorasi, M., Shaskolskiy, B. L., Gavrilas, S., & Lozinsky, V. I. (2010). New potential biocatalysts by laccase immobilization in PVA cryogel type carrier. Applied Biochemistry and Biotechnoogy, 160, 1947–1954.

    CAS  Google Scholar 

  • Stanescu, M. D., Sanislav, A., Ivanov, R. V., Hirtopeanu, A., & Lozinsky, V. I. (2011). Immobilized laccase on a new cryogel carrier and kinetics of two anthraquinone derivatives oxidation. Applied Biochemistry and Biotechnoogy, 165, 1789–1798.

    CAS  Google Scholar 

  • Stanescu, M. D., Gavrilas, S., Ludwig, R., Haltrich, D., & Lozinsky, V. I. (2012). Preparation of immobilized Trametes pubescens laccase on a cryogel-type polymeric carrier and application of the biocatalyst to apple juice phenolic compounds oxidation. European Food Research and Technology, 234, 655–662.

    CAS  Google Scholar 

  • Tavares, A. P. M., Silva, C. G., Drazic, G., Silva, A. M., Loureiro, J. M., & Faria, J. L. (2015). Laccase immobilization over multi-walled carbon nanotubes: kinetic, thermodynamic and stability studies. Journal of Colloid and Interface Science, 454, 52–60.

    CAS  Google Scholar 

  • Thurston, C. F. (1994). The structure and function of fungal laccases. Microbiology, 140, 19–26.

    CAS  Google Scholar 

  • Uygun, M. (2013). Preparation of laccase immobilized cryogels and usage for decolorization. Journal of Chemistry, 2013, 387181.

    Google Scholar 

  • Wesenberg, D., Kyriakides, I., & Agathos, S. N. (2003). White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnology Advances, 22, 161–187.

    CAS  Google Scholar 

  • Widsten, P., & Kandelbauer, A. (2008). Laccase applications in the forest products industry: a review. Enzyme and Microbial Technology, 42, 293–307.

    CAS  Google Scholar 

  • Willmott, N., Guthrie, J., & Nelson, G. (1998). The biotechnology approach to colour removal from textile effluent. Journal of the Society of Dyers and Colourists, 114, 38–41.

    CAS  Google Scholar 

  • Witayakran, S., & Ragauskas, A. J. (2009). Synthetic applications of laccase in green chemistry. Advanced Synthesis & Catalysis, 351, 1187–1209.

    CAS  Google Scholar 

  • Xu, R., Zhou, Q., Li, F., & Zhang, B. (2013). Laccase immobilization on chitosan/poly (vinyl alcohol) composite nanofibrous membranes for 2, 4-dichlorophenol removal. Chemical Engineering Journal, 222, 321–329.

    CAS  Google Scholar 

  • Yaropolov, A. I., Skorobogatko, O. V., Vartanov, S. S., & Varfolomeyev, S. D. (1994). Laccase. Applied Biochemistry and Biotechnology, 49, 257–280.

    CAS  Google Scholar 

  • Yinghui, D., Qiuling, W., & Shiyu, F. (2002). Laccase stabilization by covalent binding immobilization on activated polyvinyl alcohol carrier. Letters in Applied Microbiology, 35, 451–456.

    Google Scholar 

  • Yoshida, H. (1883). Chemistry of laquer (urushi). Journal of the Chemical Society, 43, 472–486.

    CAS  Google Scholar 

  • Zhang, J., Xu, Z., Chen, H., & Zong, Y. (2009). Removal of 2, 4-dichlorophenol by chitosan-immobilized laccase from Coriolus versicolor. Biochemical Engineering Journal, 45, 54–59.

    Google Scholar 

  • Zollinger, H. (1987). Color chemistry-synthesis, properties and application for organic dyes and pigments. NewYork: VCH Publications.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Uygun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayraktaroğlu, M., Husein, İ., Aktaş Uygun, D. et al. Lectin-Modified Cryogels for Laccase Immobilization: a Decolorization Study. Water Air Soil Pollut 231, 31 (2020). https://doi.org/10.1007/s11270-020-4395-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-4395-3

Keywords

Navigation