Skip to main content
Log in

Reversible papain immobilization onto poly(AAm–MMA)-based cryogels

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In the present work, new dye ligand affinity chromatographic support for papain adsorption was synthesized. For this purpose, poly(acrylamide–methyl methacrylate) [poly(AAm–MMA)] cryogels were synthesized by using the free radical cryopolymerization technique. These cryogels were then functionalized with Reactive Green 19 dye and were characterized with Fourier transform infrared, environmental scanning electron microscopy, macroporosity and energy-dispersive X-ray spectrometer analyses. Incorporation of the dye molecule onto cryogel structure was clearly demonstrated by these characterization techniques and pore diameter of the cryogel was found to be around 30–40μm. Effects of medium pH, initial papain concentration, medium temperature and ionic strength on the papain adsorption onto dye-attached cryogel were also investigated. Maximum papain adsorption was found to be 40.66 mg g−1 cryogel by using pH 5.5 acetate buffer at 25°C. Reusability profile of the cryogel was also investigated and it was found that the adsorption capacity of the cryogel decreased only about 2.13% at the end of the 10 reuses. Activity studies of papain in desorption medium were carried out and it was found that desorbed papain was active and showed 88.5% of its initial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Sumantha A, Larroche C and Pandey A 2006 Food Techol. Biochem. 44 211

    Google Scholar 

  2. Uygun D A, Akduman B, Uygun M, Akgöl S and Denizli A 2012 Appl. Biochem. Biotechnol. 176 552

    Article  Google Scholar 

  3. Pendzhiev A M 2002 Pharm. Chem. J. 36 315

    Article  Google Scholar 

  4. Vasconcellos F C, Goulart G A S and Beppu M M 2011 Powder Technol. 205 65

    Article  Google Scholar 

  5. Homaei A A, Sajedi R H, Sariri R, Seyfzadeh S and Stevanato R 2010 Amino Acids 38 937

    Article  Google Scholar 

  6. Chen T X, Nie H L, Li S B, White C B, Su S N and Zhu L M 2009 Colloids Surf. B 72 25

    Article  Google Scholar 

  7. Kimmel J R and Smith E L 1954 J. Biol. Chem. 207 515

    Google Scholar 

  8. Finkle B J and Smith E L 1958 J. Biol. Chem. 230 669

    Google Scholar 

  9. Baines B S and Brocklehurst K 1979 Biochem. J. 177 541

    Article  Google Scholar 

  10. Nitsawang S, Hatti-Kaul R and Kanasawud P 2006 Enzyme Microb. Technol. 39 1103

    Article  Google Scholar 

  11. Tombaccini D, Mocali A, Weber E and Paoletti F 2001 Anal. Biochem. 289 231

    Article  Google Scholar 

  12. Govrin E and Levine A 1999 Protein Expr. Purif. 15 247

    Article  Google Scholar 

  13. Nie H L, Chen T X and Zhu L M 2007 Sep. Purif. Technol. 57 121

    Article  Google Scholar 

  14. Porath J, Carlsson J, Olsson I and Belfrage G 1975 Nature 258 598

    Article  Google Scholar 

  15. Şenel Ş, Kassab A, Arıca M Y, Say R and Denizli A 2002 Colloids Surf. B 24 265

    Article  Google Scholar 

  16. Garipcan B, Bereli N, Patır S, Arıca Y and Denizli A 2001 Macromol. Biosci. 1 332

    Article  Google Scholar 

  17. Chaga G S J 2001 Biochem. Biophys. Methods 49 313

    Article  Google Scholar 

  18. Gaberc-Porekar V and Menart V 2001 J. Biochem. Biophys. Methods 49 335

    Article  Google Scholar 

  19. Özkara S, Yavuz H, Patır S, Arıca M Y and Denizli A 2002 Sep. Sci. Technol. 37 717

    Article  Google Scholar 

  20. Garipcan B and Denizli A 2002 Macromol. Biosci. 2 135

    Article  Google Scholar 

  21. Denizli A and Pişkin E 2001 J. Biochem. Biophys. Methods 49 391

    Article  Google Scholar 

  22. Nash D C and Chase H A 1997 J. Chromatogr. A 776 55

    Article  Google Scholar 

  23. Boyer P M and Hsu J T 1992 Chem. Eng. Sci. 47 241

    Article  Google Scholar 

  24. Zeng X and Ruckenstein E 1996 J. Membr. Sci. 117 271

    Article  Google Scholar 

  25. Uygun M, Uygun D A, Altunbaş C, Akgöl S and Denizli A 2014 Sep. Sci. Technol. 49 1270

    Article  Google Scholar 

  26. Başar N, Uzun L, Güner A and Denizli A 2007 Int. J. Biol. Macromol. 41 234

    Article  Google Scholar 

  27. Wongchuphan R, Tey B T, Tan W S, Taip F S, Kamal S M M and Ling T C 2009 Biochem. Eng. J. 45 232

    Article  Google Scholar 

  28. Yılmaz M, Bayramoğlu G and Arıca M Y 2005 Food Chem. 89 11

    Article  Google Scholar 

  29. Kaya N, Uygun D A, Akgöl S and Denzli A 2013 Appl. Biochem. Biotechnol. 169 2153

    Article  Google Scholar 

  30. Uygun M, Akduman B, Uygun D A, Akgöl S and Denizli A 2015 J. Biomater. Sci. 26 277

    Article  Google Scholar 

  31. Yavuz H, Akgöl S, Say R and Denizli A 2006 Int. J. Biol. Macromol. 39 303

    Article  Google Scholar 

  32. Plieva F M, Galaev I Y and Mattiasson B J 2007 Sep. Sci. 30 1657

    Article  Google Scholar 

  33. Lozinsky V I, Plieva F M, Galaev I Y and Mattiasson B 2012 Bioseparation 10 163

    Article  Google Scholar 

  34. Arpa Ç, Bereli N, Özdil E, Bektaş S and Denizli A 2010 J. Appl. Polym. Sci. 118 2208

    Google Scholar 

  35. Homaei A, Barkheh H, Sariri R and Stevanato R 2014 Amino Acids 46 1649

    Article  Google Scholar 

  36. Kembhavi A A, Kulkarni A and Pant A 1993 Appl. Biochem. Biotechnol. 38 83

    Article  Google Scholar 

  37. Bradford M M 1976 Anal. Biochem. 72 248

    Article  Google Scholar 

  38. Martins M C L, Naeemi E, Ratner B D and Barbosa M A 2003 J. Mater. Sci. Mater. Med. 14 945

    Article  Google Scholar 

  39. Uygun M, Akduman B, Akgöl S and Denizli A 2013 Appl. Biochem. Biotechnol. 170 1815

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by Adnan Menderes University Research Fund, by the project number FEF-10009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MURAT UYGUN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

UYGUN, M., YAVAŞER, R. & UYGUN, D.A. Reversible papain immobilization onto poly(AAm–MMA)-based cryogels. Bull Mater Sci 39, 1039–1046 (2016). https://doi.org/10.1007/s12034-016-1235-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1235-6

Keywords

Navigation