Skip to main content
Log in

Cellulose nanocrystal hybrid hydrogel with immobilized enzyme as heterogeneous biocatalyst for phenolic molecules oxidation

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Enzyme biocatalysts have been widely used in industrial processes; however, enzyme is difficult to separate from the reaction solution due to the homogeneous nature of biocatalyst. Hence, the cellulose nanocrystal hydrogel containing aldehyde-cellulose nanocrystal (CNCs-CHO), 2-aminoethyl methacrylate hydrochloride (AMH), itaconic acid-laccase (ITA-LAC) and N, N'-methylenebisacrylamide (MBA) as the cross-linker are synthesized using Schiff-base and APS-initiated radical polymerization, yielding the LAC-loaded heterogeneous biocatalyst. The influence of the composition on the mechanical properties, morphology, swelling behavior and permeability is investigated. The higher enzymatic activity is achieved when more CNCs are introduced into hydrogel since the incorporation of CNCs enhances permeability of hydrogel. The reusability of the LAC-loaded hybrid hydrogel is shown for 10 cycles with remaining activities of 71%. The degradation of four phenolic molecules is from 55 to 73% using Lac-loaded hybrid hydrogel as heterogeneous biocatalyst. The LAC-loaded hybrid hydrogel is used to run enzymatic reaction in a simple flow-through device which give a potential application in industry.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Reference

  1. Patel AK, Singhania RR, Pandey A (2016) Novel enzymatic processes applied to the food industry. Curr Opin Food Sci 7:64–72. https://doi.org/10.1016/j.cofs.2015.12.002

    Article  CAS  Google Scholar 

  2. Chatha SAS, Asgher M, Iqbal HMN (2017) Enzyme-based solutions for textile processing and dye contaminant biodegradation-a review. Environ Sci Pollut Res 24:14005–14018. https://doi.org/10.1007/s11356-017-8998-1

    Article  Google Scholar 

  3. Tran DN, Balkus KJ (2011) Perspective of recent progress in immobilization of enzymes. ACS Catal 1:956–968. https://doi.org/10.1021/cs200124a

    Article  CAS  Google Scholar 

  4. Ren D, Wang Z, Jiang S, Yu H, Zhang S, Zhang X (2020) Recent environmental applications of and development prospects for immobilized laccase: a review. Biotechnol Genetic Eng Rev 36:81–131. https://doi.org/10.1080/02648725.2020.1864187

    Article  Google Scholar 

  5. Scheibel DM, Gitsov I (2019) Unprecedented enzymatic synthesis of perfectly structured alternating copolymers via “green” reaction cocatalyzed by laccase and lipase compartmentalized within supramolecular complexes. Biomacromol 20:927–936. https://doi.org/10.1021/acs.biomac.8b01567

    Article  CAS  Google Scholar 

  6. Feng Y, Du Y, Kuang G, Zhong L, Hu H, Jia S, Cui J (2022) Hierarchical micro- and mesoporous ZIF-8 with core-shell superstructures using colloidal metal sulfates as soft templates for enzyme immobilization. J Colloid Interface Sci 610:709–718. https://doi.org/10.1016/j.jcis.2021.11.123

    Article  CAS  Google Scholar 

  7. Cai Y, Ding P, Ni J, Zhou L, Ahmad A, Guo X, Cohen Stuart MA, Wang J (2021) Regulated polyelectrolyte nanogels for enzyme encapsulation and activation. Biomacromol 22:4748–4757. https://doi.org/10.1021/acs.biomac.1c01030

    Article  CAS  Google Scholar 

  8. Sun M, Peng S, Nie L, Zou Y, Yang L, Gao L, Dou X, Zhao C, Feng C (2021) Three-dimensional chiral supramolecular microenvironment strategy for enhanced biocatalysis. ACS Nano 15:14972–14984. https://doi.org/10.1021/acsnano.1c05212

    Article  CAS  Google Scholar 

  9. Díez P, Villalonga R, Villalonga ML, Pingarrón JM (2012) Supramolecular immobilization of redox enzymes on cyclodextrin-coated magnetic nanoparticles for biosensing applications. J Colloid Interface Sci 386:181–188. https://doi.org/10.1016/j.jcis.2012.07.050

    Article  CAS  Google Scholar 

  10. Sáringer S, Rouster P, Szilagyi I (2021) Co-immobilization of antioxidant enzymes on titania nanosheets for reduction of oxidative stress in colloid systems. J Colloid Interface Sci 590:28–37. https://doi.org/10.1016/j.jcis.2021.01.012

    Article  CAS  Google Scholar 

  11. Mondal A, Devine R, Estes L, Manuel J, Singha P, Mancha J, Palmer M, Handa H (2021) Highly hydrophobic polytetrafluoroethylene particle immobilization via polydopamine anchor layer on nitric oxide releasing polymer for biomedical applications. J Colloid Interface Sci 585:716–728. https://doi.org/10.1016/j.jcis.2020.10.051

    Article  CAS  Google Scholar 

  12. Horn C, Pospiech D, Allertz PJ, Müller M, Salchert K, Hommel R (2021) Chemical design of hydrogels with immobilized laccase for the reduction of persistent trace compounds in wastewater. ACS Appl Polym Mater 3:2823–2834. https://doi.org/10.1021/acsapm.1c00380

    Article  CAS  Google Scholar 

  13. Scheibel DM, Gitsov I (2018) Polymer-assisted biocatalysis: effects of macromolecular architectures on the stability and catalytic activity of immobilized enzymes toward water-soluble and water-insoluble substrates. ACS Omega 3:1700–1709. https://doi.org/10.1021/acsomega.7b01721

    Article  CAS  Google Scholar 

  14. Neisiany RE, Enayati M, Sajkiewicz P (2020) Insight into the current directions in functionalized nanocomposite hydrogels. Front Mater 7:25. https://doi.org/10.3389/fmats.2020.00025

    Article  Google Scholar 

  15. Jiang Y, Krishnan N, Heo J (2020) Nanoparticle-hydrogel superstructures for biomedical applications. J Controll Release 324:505–521. https://doi.org/10.1016/j.jconrel.2020.05.041

    Article  CAS  Google Scholar 

  16. Prince E, Chen Z, Khuu N, Kumacheva E (2021) Nanofibrillar hydrogel recapitulates changes occurring in the fibrotic extracellular matrix. Biomacromol 22:2352–2362. https://doi.org/10.1021/acs.biomac.0c01714

    Article  CAS  Google Scholar 

  17. Edwards JV, Prevost NT, Condon B (2012) Immobilization of lysozyme-cellulose amide-linked conjugates on cellulose I and II cotton nanocrystalline preparations. Cellulose 19:495–506. https://doi.org/10.1007/s10570-011-9637-5

    Article  CAS  Google Scholar 

  18. Yang R, Tan H, Wei F, Wang S (2008) Peroxidase conjugate of cellulose nanocrystals for the removal of chlorinated phenolic compounds in aqueous solution. Biotechnology 7:233–241. https://doi.org/10.3923/biotech.2008.233.241

    Article  CAS  Google Scholar 

  19. Incani V, Danumah C, Boluk Y (2013) Nanocomposites of nanocrystalline cellulose for enzyme immobilization. Cellulose 20:191–200. https://doi.org/10.1007/s10570-012-9805-2

    Article  CAS  Google Scholar 

  20. Chau M, Sriskandha SE, Thérien-Aubin H, Kumacheva E (2015) Supramolecular nanofibrillar polymer hydrogels. Adv Polym Sci 268:167–208. https://doi.org/10.1007/978-3-319-15404-6_5

    Article  CAS  Google Scholar 

  21. Orakdogen N, Okai O (2006) Correlation between crosslinking efficiency and spatial inhomogeneity in poly(acrylamide) hydrogels. Polym Bull 57:631–641. https://doi.org/10.1007/s00289-006-0624-1

    Article  CAS  Google Scholar 

  22. Tang J, Javaid MU, Pan C, Yu G, Berry RM, Tam KC (2020) Self-healing Stimuli-responsive Cellulose Nanocrystal Hydrogels. Carbohydr Polym 229:115486. https://doi.org/10.1016/j.carbpol.2019.115486

    Article  CAS  Google Scholar 

  23. Getya D, Gitsov I (2022) Stronger together. Poly(styrene) gels reinforced by soft gellan gum. Gels 8:607. https://doi.org/10.3390/gels8100607

    Article  CAS  Google Scholar 

  24. Yang J, Zhao JJ, Xu F, Sun RC (2013) Revealing strong nanocomposite hydrogels reinforced by cellulose nanocrystals: insight into morphologies and interactions. ACS Appl Mater Interfaces 5:12960–12967. https://doi.org/10.1021/am403669n

    Article  CAS  Google Scholar 

  25. Pal R (2002) Complex shear modulus of concentrated suspensions of solid spherical particles. J Colloid Interface Sci 245:171–177. https://doi.org/10.1006/jcis.2001.7974

    Article  CAS  Google Scholar 

  26. Prince E, Alizadehgiashi M, Campbell M, Khuu N, Albulescu A, De France K, Ratkov D, Li Y, Hoare T, Kumacheva E (2018) Patterning of structurally anisotropic composite hydrogel sheets. Biomacromol 19:1276–1284. https://doi.org/10.1021/acs.biomac.8b00100

    Article  CAS  Google Scholar 

  27. Zhang H, Wang L, Song L, Niu G, Cao H, Wang G, Yang H, Zhu S (2011) Controllable properties and microstructure of hydrogels based on crosslinked poly(ethylene glycol) diacrylates with different molecular weights. J Appl Polym Sci 121:531–540. https://doi.org/10.1002/app.33653

    Article  CAS  Google Scholar 

  28. Goldhahn C, Burgert I, Chanana M (2019) Nanoparticle-mediated enzyme immobilization on cellulose fibers: reusable biocatalytic systems for cascade reactions. Adv Mater Interfaces 6:1900437. https://doi.org/10.1002/admi.201900437

    Article  CAS  Google Scholar 

  29. Spinelli D, Fatarella E, Michele AD, Pogni R (2013) Immobilization of fungal (Trametes versicolor) laccase onto Amberlite IR-120 H beads: optimization and characterization. Process Biochem 48:218–223. https://doi.org/10.1016/j.procbio.2012.12.005

    Article  CAS  Google Scholar 

  30. Aquino NS, Forti JC, Zucolotto V, Ciancaglini P, De Andrade AR (2011) The kinetic behavior of dehydrogenase enzymes in solution and immobilized onto nanostructured carbon platforms. Process Biochem 46:2347–2352. https://doi.org/10.1016/j.procbio.2011.09.019

    Article  CAS  Google Scholar 

  31. Kanigaridou Y, Petala A, Frontistis Z, Antonopoulou M, Solakidou M, Konstantinou I, Deligiannakis Y, Mantzavinos D, Kondarides DI (2017) Solar photocatalytic degradation of bisphenol a ith cuox/bivo4: insights into the unexpectedly favorable effect of bicarbonates. Chem Eng J 318:39–49. https://doi.org/10.1016/j.cej.2016.04.145

    Article  CAS  Google Scholar 

  32. Sun H, Yang H, Huang W, Zhang S (2015) Immobilization of laccase in a sponge-like hydrogel for enhanced durability in enzymatic degradation of dye pollutants. J Colloid Interface Sci 450:353–360. https://doi.org/10.1016/j.jcis.2015.03.037

    Article  CAS  Google Scholar 

  33. Olaniran AO, Igbinosa EO (2011) Chlorophenols and other related derivatives of environmental concern: properties. Distrib Microb Degrad Processes Chemosphere 83:1297–1306. https://doi.org/10.1016/j.chemosphere.2011.04.009

    Article  CAS  Google Scholar 

  34. Chen M, Xu P, Zeng G, Yang C, Huang D, Zhang J (2015) Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol Adv 33:745–755. https://doi.org/10.1016/j.biotechadv.2015.05.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Meiling Song from Shiyanjia Lab (www.shiyanjia.com) for the SEM analysis. Presented research was supported by the Xi'an Polytechnic University (Project No: 107020597), Key Research and Development Program of Shaanxi (Program No: 2021GY-212) and Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No: 22JK0392).

Author information

Authors and Affiliations

Authors

Contributions

LY contributed to methodology, writing, data curation, reviewing and editing, and project administration. XP contributed to experiment and writing. GX contributed to data curation, reviewing and editing, and project administration. XZ contributed to methodology, data curation, and project administration.

Corresponding author

Correspondence to Long Yang.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 358 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Peng, X., Zhang, S. et al. Cellulose nanocrystal hybrid hydrogel with immobilized enzyme as heterogeneous biocatalyst for phenolic molecules oxidation. J Mater Sci 58, 6839–6849 (2023). https://doi.org/10.1007/s10853-023-08416-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08416-4

Navigation