Skip to main content
Log in

Potential Microbial Indicators for Better Bioremediation of an Aquifer Contaminated with Vinyl Chloride or 1,1-Dichloroethene

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Trichloroethene (TCE) and 1,1,1-trichloroethane (1,1,1-TCA) are notorious pollutants in groundwater. The biodegradation of them yields more toxic vinyl chloride (VC) and 1,1-dichloroethene (1,1-DCE). Although their biodegradation is highly feasible in the lab, field remediation still faces huge challenges. One challenge of them is the lack of good microbial indicators and consequently, monitoring famous species can cause the prediction of project time span and related expenses to fail. Here, in this study, we offer a solution by integrating predominance, correlation, and principal component analysis on the testing results of the biodegradation of VC and 1,1-DCE under seven different nutrient-amendment conditions. The inoculum was from a contaminated site with accumulated 1,1-DCE and VC. Next-generation sequencing (NGS) was applied to 15 microbial communities. Traditional analysis relying predominance on NGS data may be misleading due to the variation of copy number per cell for different microorganisms. By considering predominance, correlation between copy number and removal efficiency, and PCA loading factors of the principle component analysis, bacteria of the Ruminococcaceae family, Syntrophomonas sp., Pseudomonas stutzuri, Candidatus Methanoregula, and Methanospirillum sp. could be microbial indicators for removing 1,1-DCE and VC in biodegradation. The results suggested a variety of combinations of bacteria and archaeal species can effectively remove 1,1-DCE but less so for VC. The influence of archaeal species in the natural environment on bioremediation of chlorinated solvents cannot be neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adetutu, E. M., Gundry, T. D., Patil, S. S., Golneshin, A., Adigun, J., Bhaskarla, V., et al. (2015). Exploiting the intrinsic microbial degradative potential for field-based in situ dechlorination of trichloroethene contaminated groundwater. Journal of Hazardous Materials, 300, 48–57. https://doi.org/10.1016/j.jhazmat.2015.06.055.

    Article  CAS  Google Scholar 

  • Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J.-K., Yang, J. E., et al. (2012). Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 118, 536–544. https://doi.org/10.1016/j.biortech.2012.05.042.

    Article  CAS  Google Scholar 

  • Alvarez, P. J. J., & Illman, W. A. (2006). Bioremediation and Natural Attenuation (1st ed., Environmental Science and Technology). Hoboken: Wiley.

    Google Scholar 

  • Borden, R., Beckwith, W., Lieberman, M., Akladiss, N., & Hill, S. (2007). Enhanced anaerobic bioremediation of a TCE source at the Tarheel Army missile plant using EOS. Remediation Journal, 17, 5–19. https://doi.org/10.1002/rem.20130.

    Article  Google Scholar 

  • Bradley, P. M., & Chapelle, F. H. (2010). Biodegradation of chlorinated ethenes. In In situ remediation of chlorinated solvent plumes (pp. 39–67). Springer.

  • Bräuer, S. L., Cadillo-Quiroz, H., Yashiro, E., Yavitt, J. B., & Zinder, S. H. (2006). Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature, 442(7099), 192.

    Article  Google Scholar 

  • Bräuer, S. L., Cadillo-Quiroz, H., Ward, R. J., Yavitt, J. B., & Zinder, S. H. (2011). Methanoregula boonei gen. nov., sp. nov., an acidiphilic methanogen isolated from an acidic peat bog. International Journal of Systematic and Evolutionary Microbiology, 61(1), 45–52.

    Article  Google Scholar 

  • Brisson, V. L., West, K. A., Lee, P. K. H., Tringe, S. G., Brodie, E. L., & Alvarez-Cohen, L. (2012). Metagenomic analysis of a stable trichloroethene-degrading microbial community. [Original Article]. The Isme Journal, 6, 1702. https://doi.org/10.1038/ismej.2012.15.

    Article  CAS  Google Scholar 

  • Chakraborty, R., Wu, C. H., & Hazen, T. C. (2012). Systems biology approach to bioremediation. Current Opinion in Biotechnology, 23(3), 483–490. https://doi.org/10.1016/j.copbio.2012.01.015.

    Article  CAS  Google Scholar 

  • Chang, Y. C., Hatsu, M., Jung, K., Yoo, Y. S., & Takamizawa, K. (2000). Isolation and characterization of a tetrachloroethylene dechlorinating bacterium, Clostridium bifermentans DPH-1. Journal of Bioscience and Bioengineering, 89(5), 489–491. https://doi.org/10.1016/S1389-1723(00)89102-1.

    Article  CAS  Google Scholar 

  • Chang, S.-C., Wang, W.-T., Chen, Y.-J., Chen, T.-W., Chiang, P.-Y., & Lo, Y.-S. (2017). Emulsion-enhanced recovery and biodegradation of decabrominated diphenyl ether in river sediments. [journal article]. Journal of Soils and Sediments, 17(4), 1197–1207. https://doi.org/10.1007/s11368-016-1590-3.

    Article  CAS  Google Scholar 

  • Chen, W.-M., Tseng, Z.-J., Lee, K.-S., & Chang, J.-S. (2005). Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. International Journal of Hydrogen Energy, 30(10), 1063–1070. https://doi.org/10.1016/j.ijhydene.2004.09.008.

    Article  CAS  Google Scholar 

  • Cladera, A. M., Sepúlveda-Torres, L. D. C., Valens-Vadell, M., Meyer, J.-M., Lalucat, J., & García-Valdés, E. (2006). A detailed phenotypic and genotypic description of Pseudomonas strain OX1. Systematic and Applied Microbiology, 29(5), 422–430. https://doi.org/10.1016/j.syapm.2005.11.007.

    Article  CAS  Google Scholar 

  • David, M. M., Cecillon, S., Warne, B. M., Prestat, E., Jansson, J. K., & Vogel, T. M. (2015). Microbial ecology of chlorinated solvent biodegradation. Environmental Microbiology, 17(12), 4835–4850. https://doi.org/10.1111/1462-2920.12413.

    Article  CAS  Google Scholar 

  • De Bruin, W. P., Kotterman, M., Posthumus, M. A., Schraa, G., & Zehnder, A. (1992). Complete biological reductive transformation of tetrachloroethene to ethane. Applied and Environmental Microbiology, 58(6), 1996–2000.

    Article  Google Scholar 

  • DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., et al. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72(7), 5069–5072. https://doi.org/10.1128/aem.03006-05.

    Article  CAS  Google Scholar 

  • Enzmann, F., Mayer, F., Rother, M., & Holtmann, D. (2018). Methanogens: Biochemical background and biotechnological applications. AMB Express, 8(1), 1. https://doi.org/10.1186/s13568-017-0531-x.

    Article  CAS  Google Scholar 

  • Fullerton, H., Crawford, M., Bakenne, A., Freedman, D. L., & Zinder, S. H. (2013). Anaerobic oxidation of ethene coupled to sulfate reduction in microcosms and enrichment cultures. Environmental Science & Technology, 47(21), 12374–12381. https://doi.org/10.1021/es4029765.

    Article  CAS  Google Scholar 

  • Fullerton, H., Rogers, R., Freedman, D. L., & Zinder, S. H. (2014). Isolation of an aerobic vinyl chloride oxidizer from anaerobic groundwater. Biodegradation, 25(6), 893–901. https://doi.org/10.1007/s10532-014-9708-z.

    Article  CAS  Google Scholar 

  • Gälli, R., & McCarty, P. L. (1989). Biotransformation of 1,1,1-trichloroethane, trichloromethane, and tetrachloromethane by a Clostridium sp. Applied and Environmental Microbiology, 55(4), 837.

    Article  Google Scholar 

  • Gaspard, S., & Ncibi, M. C. (2013). Biomass for sustainable applications: Pollution remediation and energy.

    Book  Google Scholar 

  • Gong, Y., Tang, J., & Zhao, D. (2016). Application of iron sulfide particles for groundwater and soil remediation: A review. Water Research, 89, 309–320. https://doi.org/10.1016/j.watres.2015.11.063.

    Article  CAS  Google Scholar 

  • Henderson, A. D., & Demond, A. H. (2007). Long-term performance of zero-valent iron permeable reactive barriers: A critical review. Environmental Engineering Science, 24(4), 401–423. https://doi.org/10.1089/ees.2006.0071.

    Article  CAS  Google Scholar 

  • Hendrickson, E. R., Payne, J. A., Young, R. M., Starr, M. G., Perry, M. P., Fahnestock, S., et al. (2002). Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Applied and Environmental Microbiology, 68(2), 485–495. https://doi.org/10.1128/aem.68.2.485-495.2002.

    Article  CAS  Google Scholar 

  • Holliger, C., Schraa, G., Stams, A. J., & Zehnder, A. J. (1993). A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Applied and Environmental Microbiology, 59(9), 2991–2997.

    Article  CAS  Google Scholar 

  • Kao, C.-M., Liao, H.-Y., Chien, C.-C., Tseng, Y.-K., Tang, P., Lin, C.-E., et al. (2016). The change of microbial community from chlorinated solvent-contaminated groundwater after biostimulation using the metagenome analysis. Journal of Hazardous Materials, 302, 144–150. https://doi.org/10.1016/j.jhazmat.2015.09.047.

    Article  CAS  Google Scholar 

  • Katz, B. G., Eberts, S. M., & Kauffman, L. J. (2011). Using Cl/Br ratios and other indicators to assess potential impacts on groundwater quality from septic systems: A review and examples from principal aquifers in the United States. Journal of Hydrology, 397(3), 151–166. https://doi.org/10.1016/j.jhydrol.2010.11.017.

    Article  CAS  Google Scholar 

  • Kielhorn, J., Melber, C., Wahnschaffe, U., Aitio, A., & Mangelsdorf, I. (2000). Vinyl chloride: Still a cause for concern. Environmental Health Perspectives, 108(7), 579–588.

    Article  CAS  Google Scholar 

  • Kingston, J., Dahlen, P., & Johnson, P. (2010). State-of-the-practice review of in situ thermal technologies. Ground Water Monitoring & Remediation, 30, 64–72. https://doi.org/10.1111/j.1745-6592.2010.01305.x.

    Article  Google Scholar 

  • Klappenbach, J. A., Saxman, P. R., Cole, J. R., & Schmidt, T. M. (2001). rrndb: The ribosomal RNA operon copy number database. Nucleic Acids Research, 29(1), 181–184. https://doi.org/10.1093/nar/29.1.181.

    Article  CAS  Google Scholar 

  • Koenigsberg, S. Hydrogen Release Compound (HRC®): A novel technology for the bioremediation of chlorinated hydrocarbons. In Proceedings of the 1999 Conference on Hazardous Waste Research, 1999 (pp. 144-157): St. Louis.

  • Koster, I. W., Rinzema, A., de Vegt, A. L., & Lettinga, G. (1986). Sulfide inhibition of the methanogenic activity of granular sludge at various pH-levels. Water Research, 20(12), 1561–1567. https://doi.org/10.1016/0043-1354(86)90121-1.

    Article  CAS  Google Scholar 

  • Krembs, F. J., Siegrist, R. L., Crimi, M. L., Furrer, R. F., & Petri, B. G. (2010). ISCO for groundwater remediation: Analysis of field applications and performance. Groundwater Monitoring & Remediation, 30(4), 42–53. https://doi.org/10.1111/j.1745-6592.2010.01312.x.

    Article  Google Scholar 

  • Leeson, A., Stroo, H. F., & Johnson, P. C. (2013). Groundwater remediation today and challenges and opportunities for the future. Groundwater, 51(2), 175–179. https://doi.org/10.1111/gwat.12039.

    Article  CAS  Google Scholar 

  • Li, Z., Wrenn, B. A., & Venosa, A. D. (2005). Anaerobic biodegradation of vegetable oil and its metabolic intermediates in oil-enriched freshwater sediments. [journal article]. Biodegradation, 16(4), 341–352. https://doi.org/10.1007/s10532-004-2057-6.

    Article  CAS  Google Scholar 

  • Liang, C., & Lai, M.-C. (2008). Trichloroethylene degradation by zero valent iron activated persulfate oxidation. Environmental Engineering Science, 25(7), 1071–1078. https://doi.org/10.1089/ees.2007.0174.

    Article  CAS  Google Scholar 

  • Liu, N., Li, H., Li, M., Ding, L., Weng, C.-H., & Dong, C.-D. (2017). Oxygen exposure effects on the dechlorinating activities of a trichloroethene-dechlorination microbial consortium. Bioresource Technology, 240, 98–105. https://doi.org/10.1016/j.biortech.2017.02.112.

    Article  CAS  Google Scholar 

  • Long, C. M., & Borden, R. C. (2006). Enhanced reductive dechlorination in columns treated with edible oil emulsion. Journal of Contaminant Hydrology, 87(1–2), 54–72. https://doi.org/10.1016/j.jconhyd.2006.04.010.

    Article  CAS  Google Scholar 

  • Madigan, M. T., Bender, K. S., Buckley, D. H., WM, S., & Stahl, D. A. (2019). Brock biology of microorganisms (15th ed.). London: Pearson Education Limited.

    Google Scholar 

  • Mao, X., Stenuit, B., Polasko, A., & Alvarez-Cohen, L. (2015). Efficient metabolic exchange and electron transfer within a syntrophic trichloroethene-degrading coculture of Dehalococcoides mccartyi 195 and Syntrophomonas wolfei. Applied and Environmental Microbiology, 81(6).

  • Mao, X., Polasko, A., & Alvarez-Cohen, L. (2017). Effects of sulfate reduction on trichloroethene dechlorination by Dehalococcoides-containing microbial communities. Applied and Environmental Microbiology, 83(8), e03384–e03316.

    Article  CAS  Google Scholar 

  • Matturro, B., Ubaldi, C., Grenni, P., Caracciolo, A. B., & Rossetti, S. (2016). Polychlorinated biphenyl (PCB) anaerobic degradation in marine sediments: Microcosm study and role of autochthonous microbial communities. [journal article]. Environmental Science and Pollution Research, 23(13), 12613–12623. https://doi.org/10.1007/s11356-015-4960-2.

    Article  CAS  Google Scholar 

  • McCarty, P. L., Chu, M.-Y., & Kitanidis, P. K. (2007). Electron donor and pH relationships for biologically enhanced dissolution of chlorinated solvent DNAPL in groundwater. European Journal of Soil Biology, 43(5), 276–282. https://doi.org/10.1016/j.ejsobi.2007.03.004.

    Article  CAS  Google Scholar 

  • McDade, J. M., McGuire, T. M., & Newell, C. J. (2005). Analysis of DNAPL source-depletion costs at 36 field sites. Remediation Journal, 15(2), 9–18. https://doi.org/10.1002/rem.20039.

    Article  Google Scholar 

  • McGuire, T., McDade, J., & Newell, C. (2006). Performance of DNAPL source depletion technologies at 59 chlorinated solvent-impacted sites. Ground Water Monitoring and Remediation, 26, 73–84. https://doi.org/10.1111/j.1745-6592.2006.00054.x.

    Article  CAS  Google Scholar 

  • Mészáros, É., Sipos, R., Pál, R., Romsics, C., & Márialigeti, K. (2013). Stimulation of trichloroethene biodegradation in anaerobic three-phase microcosms. International Biodeterioration & Biodegradation, 84, 126–133. https://doi.org/10.1016/j.ibiod.2012.08.006.

    Article  CAS  Google Scholar 

  • Miller, T. R., Franklin, M. P., & Halden, R. U. (2007). Bacterial community analysis of shallow groundwater undergoing sequential anaerobic and aerobic chloroethene biotransformation. FEMS Microbiology Ecology, 60(2), 299–311. https://doi.org/10.1111/j.1574-6941.2007.00290.x.

    Article  CAS  Google Scholar 

  • Miura, T., Yamazoe, A., Ito, M., Ohji, S., Hosoyama, A., Takahata, Y., et al. (2015). The impact of injections of different nutrients on the bacterial community and its dechlorination activity in chloroethene-contaminated groundwater. Microbes and environments / JSME, 30. https://doi.org/10.1264/jsme2.ME14127.

  • Moore, D. S., Notz, W. I., & Flinger, M. A. (2013). The basic practice of statistics. New York: W. H. Freeman and Company.

    Google Scholar 

  • Morrison, D. J., Mackay, W. G., Edwards, C. A., Preston, T., Dodson, B., & Weaver, L. T. (2007). Butyrate production from oligofructose fermentation by the human faecal flora: What is the contribution of extracellular acetate and lactate? British Journal of Nutrition, 96(3), 570–577. https://doi.org/10.1079/BJN20061853.

    Article  CAS  Google Scholar 

  • Panagiotakis, I., Mamais, D., Pantazidou, M., Rossetti, S., Aulenta, F., & Tandoi, V. (2014). Predominance of Dehalococcoides in the presence of different sulfate concentrations. Water, Air, & Soil Pollution, 225(1), 1785.

    Article  Google Scholar 

  • Reis, M. A. M., Almeida, J. S., Lemos, P. C., & Carrondo, M. J. T. (1992). Effect of hydrogen sulfide on growth of sulfate reducing bacteria. Biotechnology and Bioengineering, 40(5), 593–600. https://doi.org/10.1002/bit.260400506.

    Article  CAS  Google Scholar 

  • Ren, Z., Ward, T., Logan, B., & Regan, J. (2007). Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species. Journal of Applied Microbiology, 103(6), 2258–2266.

    Article  CAS  Google Scholar 

  • Révész, S., Sipos, R., Kende, A., Rikker, T., Romsics, C., Mészáros, É., et al. (2006). Bacterial community changes in TCE biodegradation detected in microcosm experiments. International Biodeterioration & Biodegradation, 58(3), 239–247. https://doi.org/10.1016/j.ibiod.2006.06.018.

    Article  CAS  Google Scholar 

  • Robinson, C., Barry, D. A., McCarty, P. L., Gerhard, J. I., & Kouznetsova, I. (2009). pH control for enhanced reductive bioremediation of chlorinated solvent source zones. Science of the Total Environment, 407(16), 4560–4573. https://doi.org/10.1016/j.scitotenv.2009.03.029.

    Article  CAS  Google Scholar 

  • Sandefur, C. A., & Koenigsberg, S. S. (1999). The use of hydrogen release compound for the accelerated bioremediation of anaerobically degradable contaminants: The advent of time-release electron donors. Remediation Journal, 10(1), 31–53. https://doi.org/10.1002/rem.3440100104.

    Article  Google Scholar 

  • Sawyer, C. N., McCarty, P. L., & Parkin, G. F. (2003). Chemistry for environmental engineering and science (5th ed.). New York: McGraw-Hill Companies, Inc..

    Google Scholar 

  • Scheutz, C., Durant, N. D., Hansen, M. H., & Bjerg, P. L. (2011). Natural and enhanced anaerobic degradation of 1,1,1-trichloroethane and its degradation products in the subsurface – A critical review. Water Research, 45(9), 2701–2723. https://doi.org/10.1016/j.watres.2011.02.027.

    Article  CAS  Google Scholar 

  • Schipp, C. J., Marco-Urrea, E., Kublik, A., Seifert, J., & Adrian, L. (2013). Organic cofactors in the metabolism of Dehalococcoides mccartyi strains. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1616), 20120321. https://doi.org/10.1098/rstb.2012.0321.

    Article  CAS  Google Scholar 

  • Sieber, J. R., Sims, D. R., Han, C., Kim, E., Lykidis, A., Lapidus, A. L., et al. (2010). The genome of Syntrophomonas wolfei: New insights into syntrophic metabolism and biohydrogen production. Environmental Microbiology, 12(8), 2289–2301.

    CAS  Google Scholar 

  • Silva, M. L. D., & Alvarez, P. J. (2008). Exploring the correlation between halorespirer biomarker concentrations and TCE dechlorination rates. Journal of Environmental Engineering, 134(11), 895–901. https://doi.org/10.1061/(ASCE)0733-9372(2008)134:11(895).

    Article  CAS  Google Scholar 

  • Sleep, B. E., Brown, A. J., & Lollar, B. S. (2005). Long-term tetrachlorethene degradation sustained by endogenous cell decay. Journal of Environmental Engineering and Science, 4(1), 11–17. https://doi.org/10.1139/s04-038.

    Article  CAS  Google Scholar 

  • Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. K., & Schmidt, T. M. (2015). rrnDB: Improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Research, 43(Database issue), D593–D598. https://doi.org/10.1093/nar/gku1201.

    Article  CAS  Google Scholar 

  • Stroo, H. F., Unger, M., Ward, C. H., Kavanaugh, M. C., Vogel, C., Leeson, A., et al. (2003). Peer reviewed: Remediating chlorinated solvent source zones. Environmental Science & Technology, 37(11), 224A–230A. https://doi.org/10.1021/es032488k.

    Article  CAS  Google Scholar 

  • Suthersan, S. S., Horst, J., Schnobrich, M., Welty, N., & McDonough, J. (2016). Remediation engineering: design concepts. CRC press.

  • Szymanowska-Powałowska, D., Orczyk, D., & Leja, K. (2014). Biotechnological potential of Clostridium butyricum bacteria. Brazilian Journal of Microbiology, 45(3), 892–901.

    Article  Google Scholar 

  • Tsai, T. T., Liu, J. K., Chang, Y. M., Chen, K. F., & Kao, C. M. (2014). Application of polycolloid-releasing substrate to remediate trichloroethylene-contaminated groundwater: A pilot-scale study. Journal of Hazardous Materials, 268, 92–101. https://doi.org/10.1016/j.jhazmat.2014.01.004.

    Article  CAS  Google Scholar 

  • Tung, C.-C. (2016). Adding different carbon sources into soybean oil emulsion to stimulate biodegradation of teirchloroethylene in an aquifer: A pilot study. Master, National Chung Hsing Universiyt, Taichung City, Taiwan.

  • Větrovský, T., & Baldrian, P. (2013). The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One, 8(2), e57923. https://doi.org/10.1371/journal.pone.0057923.

    Article  CAS  Google Scholar 

  • Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73(16), 5261. https://doi.org/10.1128/AEM.00062-07.

    Article  CAS  Google Scholar 

  • Wiedemeier, T. H., Rifai, H. S., Newell, C. J., & Wilson, J. T. (1999). Natural attenuation of fuels and chlorinated solvents in the subsurface. New York: Wiley.

    Book  Google Scholar 

  • Yang, Y., Cápiro, N. L., Marcet, T. F., Yan, J., Pennell, K. D., & Löffler, F. E. (2017). Organohalide respiration with chlorinated ethenes under low pH conditions. Environmental Science & Technology, 51(15), 8579–8588. https://doi.org/10.1021/acs.est.7b01510.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially funded by a seed grant provided by the National Chung Hsing University. The authors would like to thank the technical assistance from Biotools, Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Chi Chang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 46 kb)

ESM 2

(DOCX 728 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, TW., Chang, SC. Potential Microbial Indicators for Better Bioremediation of an Aquifer Contaminated with Vinyl Chloride or 1,1-Dichloroethene. Water Air Soil Pollut 231, 239 (2020). https://doi.org/10.1007/s11270-020-04538-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04538-6

Keywords

Navigation