Skip to main content

Advertisement

Log in

Modřice Plant Anaerobic Digester: Microbial Distribution and Biogas Production

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Biogas reactors are now a common part of wastewater treatment systems. The quality of produced biogas is the result of many factors, mainly the input substrate and microbial composition of the bioreactor. The aim of this research was to evaluate the microbial community of the Modřice biogas reactor together with the possible changes in biogas composition. The key microbial groups and their content in anaerobic digester were identified by sequencing techniques. The most dominant group were sulphate-reducing (45%), followed by methanogenic (19%), acetate (6%) and hydrogen-producing (11%) microorganisms. The remaining microorganisms were identified only to their order (19%). Phylogenetic trees were constructed to show evolutionary relationships of detected microorganisms. The volume of methane in biogas content was 60%, which corresponds with literature data regarding sewage digesters. None of the detected impurities have crossed the safe limits and their volume remained stable during the measurement period. Despite sulphate-reducing bacteria being the dominant group, their produced hydrogen sulphide (H2S) was detected only in a small quantity (2.43–7.46 ppm) and had no inhibitory effect on the methane production. The mechanism of inhibition by H2S and the perspective of its biological removal were discussed. Application of phototrophic sulphur bacteria, especially Chlorobiaceae and Chromatiaceae family, and the creation of new photobioreactor systems can be a promising pathway for hydrogen sulphide treatment in biogas plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402.

    CAS  Google Scholar 

  • Barton, L. L., & Hamilton, W. A. (Eds.). (2007). Sulphate-reducing bacteria (1st ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Boone, D. R., Castenholz, R. W., & Garrity, G. M. (2012). Bergey’s manual of systematic bacteriology (2nd ed.). New York: Springer.

    Google Scholar 

  • Bryant, M. P. (1979). Microbial methane production—theoretical aspects 2. Journal of Animal Science, 48(1), 193–201.

    CAS  Google Scholar 

  • Buisman, C., Post, R., Ijspeert, P., Geraats, G., & Lettinga, G. (1989). Biotechnological process for sulphide removal with sulphur reclamation. Acta Biotechnologica, 9(3), 255–267.

    CAS  Google Scholar 

  • Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335–336.

    CAS  Google Scholar 

  • Černý, M., Vítězová, M., Vítěz, T., Bartoš, M., & Kushkevych, I. (2018). Variation in the distribution of hydrogen producers from the Clostridiales order in biogas reactors depending on different input substrates. Energies, 11(12).

  • Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresource Technology, 99(10), 4044–4064.

    CAS  Google Scholar 

  • Colleran, E., Finnegan, S., & Lens, P. (1995). Anaerobic treatment of sulphate-containing waste streams. Antonie Van Leeuwenhoek, 67(1), 29–46.

    CAS  Google Scholar 

  • Conrad, R. (1999). Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiology Ecology, 28(3), 193–202.

    CAS  Google Scholar 

  • Copeland, A., Spring, S., Göker, M., Schneider, S., Lapidus, A., Del Rio, T. G., et al. (2009). Complete genome sequence of Desulfomicrobium baculatum type strain (XT). Standards in Genomic Sciences, 1(1), 29–37.

    Google Scholar 

  • CSN EN 121761 Characterization of sludge—determination of pH-value. (1999). Prague: Czech Standards Institute.

  • CSN EN 14346 Characterization of waste—calculation of dry matter by determination of dry residue or water content. (2007). Prague: Czech Standards Institute.

  • CSN EN 15169 Characterization of waste—determination of loss on ignition in waste, sludge and sediments. (2007). Prague: Czech Standards Institute.

  • Dahl, C., Hell, R., Leustek, T., & Knaff, D. (2008). Introduction to sulfur metabolism in phototrophic organisms. In Sulfur metabolism in phototrophic organisms (pp. 1–14). Dordrecht: Springer.

    Google Scholar 

  • Demirel, B., & Scherer, P. (2008). The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Reviews in Environmental Science and Bio/Technology, 7(2), 173–190.

    CAS  Google Scholar 

  • Edgar, R. C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5(1), 113–113.

    Google Scholar 

  • Flörke, M., Kynast, E., Bärlund, I., Eisner, S., Wimmer, F., & Alcamo, J. (2013). Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: a global simulation study. Global Environmental Change, 23(1), 144–156.

    Google Scholar 

  • Fotidis, I. A., Karakashev, D., & Angelidaki, I. (2013). Bioaugmentation with an acetate-oxidising consortium as a tool to tackle ammonia inhibition of anaerobic digestion. Bioresource Technology, 146, 57–62.

    CAS  Google Scholar 

  • Gabriel, D., & Deshusses, M. A. (2003). Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control. Proceedings of the National Academy of Sciences, 100(11), 6308–6312.

    CAS  Google Scholar 

  • Hansen, T. A. (1993). Carbon metabolism of sulfate-reducing bacteria. In The sulfate-reducing bacteria: contemporary perspectives (pp. 21–40). New York: Springer.

    Google Scholar 

  • Henshaw, P. (2001). Biological conversion of hydrogen sulphide to elemental sulphur in a fixed-film continuous flow photo-reactor. Water Research, 35(15), 3605–3610.

    CAS  Google Scholar 

  • Henshaw, P., Medlar, D., & McEwen, J. (1999). Selection of a support medium for a fixed-film green sulphur bacteria reactor. Water Research, 33(14), 3107–3110.

    CAS  Google Scholar 

  • Hobson, P. N. (1982). Biogas production from agricultural wastes. Experientia, 38(2), 206–209.

    CAS  Google Scholar 

  • Hurse, T. J., Kappler, U., & Keller, J. (2008). Using anoxygenic photosynthetic bacteria for the removal of sulfide from wastewater. In Sulfur metabolism in phototrophic organisms (pp. 437–460). Dordrecht: Springer.

    Google Scholar 

  • Imachi, H., & Sakai, S. (2015). Methanolinea. In Bergey’s manual of systematics of archaea and bacteria (pp. 1–4). Chichester: Wiley.

    Google Scholar 

  • Imhoff, J. F. (2008). Systematics of anoxygenic phototrophic bacteria. In Sulfur metabolism in phototrophic organisms (pp. 269–287). Dordrecht: Springer.

    Google Scholar 

  • Imhoff, J. F. (2014a). The family Chlorobiaceae. In The prokaryotes (4 ed., pp. 501–514). Berlin: Springer.

    Google Scholar 

  • Imhoff, J. F. (2014b). The family Chromatiaceae. In The prokaryotes (pp. 151–178). Berlin: Springer.

    Google Scholar 

  • Imhoff, J. F. (2015). Chromatiaceae. In Bergey’s manual of systematics of archaea and bacteria (pp. 1–12). Chichester: Wiley.

    Google Scholar 

  • Kim, B. W., & Chang, H. N. (1991). Removal of hydrogen sulfide by Chlorobium thiosulfatophilum in immobilized-cell and sulfur-settling free-cell recycle reactors. Biotechnology Progress, 7(6), 495–500.

    CAS  Google Scholar 

  • Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111–120.

    CAS  Google Scholar 

  • Klok, J. B. M., de Graaff, M., van den Bosch, P. L. F., Boelee, N. C., Keesman, K. J., & Janssen, A. J. H. (2013). A physiologically based kinetic model for bacterial sulfide oxidation. Water Research, 47(2), 483–492.

    CAS  Google Scholar 

  • Kobayashi, H. A., Stenstrom, M., & Mah, R. A. (1983). Use of photosynthetic bacteria for hydrogen sulfide removal from anaerobic waste treatment effluent. Water Research, 17(5), 579–587.

    CAS  Google Scholar 

  • Koeck, D. E., Hahnke, S., & Zverlov, V. V. (2016). Herbinix luporum sp. nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor. International Journal of Systematic and Evolutionary Microbiology, 66(10), 4132–4137.

    CAS  Google Scholar 

  • Koschorreck, M. (2008). Microbial sulphate reduction at a low pH. FEMS Microbiology Ecology, 64(3), 329–342.

    CAS  Google Scholar 

  • Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., & Battistuzzi, F. U. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549.

    CAS  Google Scholar 

  • Kushkevych, I., Vítězová, M., Vítěz, T., & Bartoš, M. (2017). Production of biogas: relationship between methanogenic and sulfate-reducing microorganisms. Open Life Sciences, 12(1), 82–91.

    CAS  Google Scholar 

  • Kushkevych, I., Vítězová, M., Vítěz, T., Kováč, J., Kaucká, P., Jesionek, W., et al. (2018a). A new combination of substrates: biogas production and diversity of the methanogenic microorganisms. Open Life Sciences, 13(1), 119–128.

    CAS  Google Scholar 

  • Kushkevych, I., Kováč, J., Vítězová, M., Vítěz, T., & Bartoš, M. (2018b). The diversity of sulfate-reducing bacteria in the seven bioreactors. Archives of Microbiology, 200(6), 945–950.

    CAS  Google Scholar 

  • Kushkevych, I., Dordević, D., & Vítězová, M. (2019a). Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Archives of Microbiology, 201(3), 389–397.

    CAS  Google Scholar 

  • Kushkevych, I., Kobzová, E., Vítězová, M., Vítěz, T., Dordević, D., & Bartoš, M. (2019b). Acetogenic microorganisms in operating biogas plants depending on substrate combinations. Biologia, 74, 1–8.

    Google Scholar 

  • Laanbroek, H. J., Geerligs, H. J., Sijtsma, L., & Veldkamp, H. (1984). Competition for sulfate and ethanol among Desulfobacter, Desulfobulbus, and Desulfovibrio species isolated from intertidal sediments. Applied and Environmental Microbiology, 47(2), 329.

    CAS  Google Scholar 

  • Laws, E. A. (2017). Aquatic pollution: an introductory text (4th ed.). Hoboken: Wiley.

    Google Scholar 

  • Lin, S., Mackey, H. R., Hao, T., Guo, G., van Loosdrecht, M. C. M., & Chen, G. (2018). Biological sulfur oxidation in wastewater treatment: a review of emerging opportunities. Water Research, 143, 399–415.

    CAS  Google Scholar 

  • Manzoor, S., Schnürer, A., Bongcam-Rudloff, E., & Müller, B. (2016). Complete genome sequence of Methanoculleus bourgensis strain MAB1, the syntrophic partner of mesophilic acetate-oxidising bacteria (SAOB). Standards in Genomic Sciences, 11(1).

  • McCartney, D. M., & Oleszkiewicz, J. A. (1993). Competition between methanogens and sulfate reducers: effect of COD. Water Environment Research, 65(5), 655–664.

    CAS  Google Scholar 

  • Muyzer, G., & Stams, A. J. M. (2008). The ecology and biotechnology of sulphate-reducing bacteria. Nature Reviews Microbiology, 6(6), 441–454.

    CAS  Google Scholar 

  • Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first and second generation biofuels: a comprehensive review. Renewable and Sustainable Energy Reviews, 14(2), 578–597.

    CAS  Google Scholar 

  • Nath, K., & Das, D. (2004). Improvement of fermentative hydrogen production: various approaches. Applied Microbiology and Biotechnology, 65(5).

  • Nossa, C. W. (2010). Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World Journal of Gastroenterology, 16(33).

    CAS  Google Scholar 

  • Oren, A. (2014). The family Methanospirillaceae. In The prokaryotes (pp. 283–290). Berlin: Springer.

    Google Scholar 

  • Oyarzún, P., Arancibia, F., Canales, C., & Aroca, G. E. (2003). Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus. Process Biochemistry, 39(2), 165–170.

    Google Scholar 

  • Parawira, W., Read, J. S., Mattiasson, B., & Björnsson, L. (2008). Energy production from agricultural residues: high methane yields in pilot-scale two-stage anaerobic digestion. Biomass and Bioenergy, 32(1), 44–50.

    CAS  Google Scholar 

  • Parkin, G. F., Lynch, N. A., Kuo, W. C., Van Keuren, E. L., & Bhattacharya, S. K. (1990). Interaction between sulfate reducers and methanogens fed acetate and propionate. Research Journal of the Water Pollution Control Federation, 62(6), 780–788.

    CAS  Google Scholar 

  • Patel, G. B., Khan, A. W., Agnew, B. J., & Colvin, J. R. (1980). Isolation and characterization of an anaerobic, cellulolytic microorganism, Acetivibrio cellulolyticus gen. nov., sp. nov. International Journal of Systematic and Evolutionary Microbiology, 30(1), 179–185.

    CAS  Google Scholar 

  • Podosokorskaya, O. A., Bonch-Osmolovskaya, E. A., Beskorovaynyy, A. V., Toshchakov, S. V., Kolganova, T. V., & Kublanov, I. V. (2014). Mobilitalea sibirica gen. nov., sp. nov., a halotolerant polysaccharide-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology, 64(Pt 8), 2657–2661.

    CAS  Google Scholar 

  • Pokorna, D., & Zabranska, J. (2015). Sulfur-oxidizing bacteria in environmental technology. Biotechnology Advances, 33(6), 1246–1259.

    CAS  Google Scholar 

  • Schnurer, A., Schink, B., & Svensson, B. H. (1996). Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. International Journal of Systematic Bacteriology, 46(4), 1145–1152.

    CAS  Google Scholar 

  • Sercu, B., Núñez, D., Van Langenhove, H., Aroca, G., & Verstraete, W. (2005). Operational and microbiological aspects of a bioaugmented two-stage biotrickling filter removing hydrogen sulfide and dimethyl sulfide. Biotechnology and Bioengineering, 90(2), 259–269.

    CAS  Google Scholar 

  • Stams, A. J. M., & Plugge, C. M. (2009). Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nature Reviews Microbiology, 7(8), 568–577.

    CAS  Google Scholar 

  • Stefanie, J. W. H. O. E., Visser, A., Pol, L. W. H., & Stams, A. J. M. (1994). Sulfate reduction in methanogenic bioreactors. FEMS Microbiology Reviews, 15(2–3), 119–136.

    Google Scholar 

  • Struk, M., Kushkevych, I. (2018). Perspectives of application of phototrophic sulfur bacteria in hydrogen sulfide utilization. In MendelNet 2018: proceedings of 25th international PhD students conference. Brno, Czech Republic, 537–541.

  • Sublette, K. L., & Sylvester, N. D. (1987). Oxidation of hydrogen sulfide by mixed cultures of Thiobacillus denitrificans and heterotrophs. Biotechnology and Bioengineering, 29(6), 759–761.

    CAS  Google Scholar 

  • Syed, M. A., & Henshaw, P. F. (2003). Effect of tube size on performance of a fixed-film tubular bioreactor for conversion of hydrogen sulfide to elemental sulfur. Water Research, 37(8), 1932–1938.

    CAS  Google Scholar 

  • Syed, M., Soreanu, G., Falletta, P., & Béland, M. (2006). Removal of hydrogen sulfide from gas streams using biological processes—a review. Canadian Biosystems Engineering, 48, 2.

    Google Scholar 

  • Tang, K., Baskaran, V., & Nemati, M. (2009). Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochemical Engineering Journal, 44(1), 73–94.

    CAS  Google Scholar 

  • Tursman, J. F., & Cork, D. J. (1989). Influence of sulfate and sulfate-reducing bacteria on anaerobic digestion technology. Advances in Biotechnological Processes, 12, 273–285.

    CAS  Google Scholar 

  • Ullah Khan, I., Hafiz Dzarfan Othman, M., Hashim, H., Matsuura, T., Ismail, A. F., Rezaei-DashtArzhandi, M., & Wan Azelee, I. (2017). Biogas as a renewable energy fuel—a review of biogas upgrading, utilisation and storage. Energy Conversion and Management, 150, 277–294.

    CAS  Google Scholar 

  • van den Brand, T. P. H., Roest, K., Brdjanovic, D., Chen, G. H., & van Loosdrecht, M. C. M. (2014). Influence of acetate and propionate on sulphate-reducing bacteria activity. Journal of Applied Microbiology, 117(6), 1839–1847.

    Google Scholar 

  • Ziemiński, K., & Frąc, M. (2012). Methane fermentation process as anaerobic digestion of biomass: transformations, stages and microorganisms. African Journal of Biotechnology, 11(18), 4127–4139.

    Google Scholar 

Download references

Funding

This study was supported by a grant agency of Masaryk University (MUNI/A/0902/2018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin Struk or Ivan Kushkevych.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Struk, M., Vítězová, M., Vítěz, T. et al. Modřice Plant Anaerobic Digester: Microbial Distribution and Biogas Production. Water Air Soil Pollut 230, 240 (2019). https://doi.org/10.1007/s11270-019-4289-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4289-4

Keywords

Navigation