Skip to main content
Log in

Responses of Wetland Plant Carex vulpina to Copper and Iron Nanoparticles

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Currently, the use of nanotechnologies is in rapid expansion, which entails increasing risks of environmental contamination by nanoparticles. Many studies describe the toxic effects on human cells, but little is known about the possible adverse effects on plants. Currently, various nanoparticles are often detected in streams, wastewater, and sewage due to widespread nanoparticle uses. We studied the accumulation and the effect of metal oxide nanoparticles together with their bulk counter particles and soluble metal salts on the growth of a wetland plant species true fox-sedge (Carex vulpina L.). The concentration 100 mg/l of copper nanoparticles significantly affected the growth of the plants, roots characteristics, and content of the photosynthetic pigments in leaves, while the same concentration of iron nanoparticles did not reduced any of the measured items. Using the bulk materials, the effect was very similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abramova, A., Gedanken, A., Popov, V., et al. (2013). A sonochemical technology for coating of textiles with antibacterial nanoparticles and equipment for its implementation. Materials Letters, 96, 121–124.

    Article  CAS  Google Scholar 

  • Andreotti, F., Mucha, A. P., Caetano, C., et al. (2015). Interactions between salt marsh plants and Cu nanoparticles—effects on metal uptake and phytoremediation processes. Ecotoxicology and Environmental Safety, 120, 303–309.

    Article  CAS  Google Scholar 

  • Anjum, N. A., Adam, V., Kizek, R., et al. (2015). Nanoscale copper in the soil-plant system—toxicity and underlying potential mechanisms. Environmental Research, 138, 306–325.

    Article  CAS  Google Scholar 

  • Aruoja, V., Dubourguier, H.-C., Kasemets, K., et al. (2009). Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Science of the Total Environment, 407, 1461–1468.

    Article  CAS  Google Scholar 

  • Chang, Y.-N., Zhang, M., Xia, L., et al. (2012). The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials, 5, 2850–2871.

    Article  CAS  Google Scholar 

  • Giorgetti, L., Castiglione, M. R., Bernabini, M., et al. (2011). Nanoparticles effects on growth and differentiation in cell culture of carrot (Daucus carota L.) Agrochimica, 55, 45–53.

    Google Scholar 

  • Gopalakrishnan Nair, P. M., & Chung, I. M. (2015). Biochemical, anatomical and molecular level changes in cucumber (Cucumis sativus) seedlings exposed to copper oxide nanoparticles. Biologia, 70, 1575–1585.

    Article  CAS  Google Scholar 

  • Hsieh, S. F., Bello, D., Schmidt, D. F., et al. (2013). Mapping the biological oxidative damage of engineered nanomaterials. Small, 9, 1853–1865.

    Article  CAS  Google Scholar 

  • Hu, C., Liu, Y., Li, X., et al. (2013). Biochemical responses of duckweed (Spirodela polyrhiza) to zinc oxide nanoparticles. Archives of Environmental Contamination and Toxicology, 64, 643–651.

    Article  CAS  Google Scholar 

  • Jeyasubramanian, K., Thoppey, U. U. G., Hikku, G. S., et al. (2016). Enhancement in growth rate and productivity of spinach grown in hydroponics with iron oxide nanoparticles. RSC Advances, 6, 15451–15459.

    Article  CAS  Google Scholar 

  • Kim, S., Lee, S., & Lee, I. (2012). Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water, Air, and Soil Pollution, 223, 2799–2806.

    Article  CAS  Google Scholar 

  • Konotop, Y. O., Kovalenko, M. S., Ulynets, V. Z., et al. (2014). Phytotoxicity of colloidal solutions of metal-containing nanoparticles. Cytology and Genetics, 48, 99–102.

    Article  Google Scholar 

  • Landa, P., Cyrusova, T., Jerabkova, J., et al. (2016). Effect of metal oxides on plant germination: phytotoxicity of nanoparticles, bulk materials, and metal ions. Water, Air, & Soil Pollution, 227, 448.

    Article  Google Scholar 

  • Lebedev, S. V., Korotkova, A. M., & Osipova, E. A. (2014). Influence of Fe-0 nanoparticles, magnetite Fe3O4 nanoparticles, and iron (II) sulfate (FeSO4) solutions on the content of photosynthetic pigments in Triticum vulgare. Russian Journal of Plant Physiology, 61, 564–569.

    Article  CAS  Google Scholar 

  • Li, X., Yang, Y. C., Gao, B., et al. (2015). Stimulation of peanut seedling development and growth by zero-valent iron nanoparticles at low concentrations. PloS One, 10, e0122884.

    Article  Google Scholar 

  • Libralato, G., Devoti, A. C., Zanella, M., et al. (2016). Phytotoxicity of ionic, micro- and nano-sized iron in three plant species. Ecotoxicology and Environmental Safety, 123, 81–88.

    Article  CAS  Google Scholar 

  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids—pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382.

    Article  CAS  Google Scholar 

  • Liu, R., & Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment, 514, 131–139.

    Article  CAS  Google Scholar 

  • Llorens, A., Lloret, E., Picouet, P. A., et al. (2012). Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends in Food Science & Technology, 24, 19–29.

    Article  CAS  Google Scholar 

  • Luyts, K., Napierska, D., Nemery, B., et al. (2013). How physico-chemical characteristics of nanoparticles cause their toxicity: complex and unresolved interrelations. Environmental Science: Processes & Impacts, 15, 23–38.

    CAS  Google Scholar 

  • Ma, C. X., White, J. C., Dhankher, O. P., et al. (2015). Metal-based nanotoxicity and detoxification pathways in higher plants. Environmental Science & Technology, 49, 7109–7122.

    Article  CAS  Google Scholar 

  • Masarovicova, E., & Kral’ova, K. (2013). Metal nanoparticles and plants. Ecological Chemistry and Engineering S-Chemia I Inzynieria Ekologiczna S, 20, 9–22.

    CAS  Google Scholar 

  • Nitsch, J. P., & Nitsch, C. (1965). In vitro formation of flowers in a short-day species—Plumbago indica L. Annales De Physiologie Vegetale, 7, 251.

    Google Scholar 

  • Peng, C., Duan, D. C., Xu, C., et al. (2015). Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Environmental Pollution, 197, 99–107.

    Article  CAS  Google Scholar 

  • Perreault, F., Samadani, M., & Dewez, D. (2014). Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L. Nanotoxicology, 8, 374–382.

    Article  CAS  Google Scholar 

  • Rui, M. M., Ma, C. X., Hao, Y., et al. (2016). Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Frontiers in Plant Science, 7, 815.

    Article  Google Scholar 

  • Shaw, A. K., Ghosh, S., Kalaji, H. M., et al. (2014). Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.) Environmental and Experimental Botany, 102, 37–47.

    Article  CAS  Google Scholar 

  • Song, G. L., Hou, W. H., Gao, Y., et al. (2016). Effects of CuO nanoparticles on Lemna minor. Botanical Studies, 57(1), 3.

    Article  Google Scholar 

  • Thwala, M., Klaine, S. J., & Musee, N. (2016). Interactions of metal-based engineered nanoparticles with aquatic higher plants: a review of the state of current knowledge. Environmental Toxicology and Chemistry, 35, 1677–1694.

    Article  CAS  Google Scholar 

  • Wang, Y. G., Aker, W. G., Hwang, H. M., et al. (2011a). A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells. Science of the Total Environment, 409, 4753–4762.

    Article  CAS  Google Scholar 

  • Wang, H. H., Kou, X. M., Pei, Z. G., et al. (2011b). Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology, 5, 30–42.

    Article  Google Scholar 

  • Zhao, M. H., Xu, Y., Zhang, C. S., et al. (2016). New trends in removing heavy metals from wastewater. Applied Microbiology and Biotechnology, 100, 6509–6518.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by projects MYES of CR no. LD14100 and no. LD13028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Podlipná.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cyrusová, T., Petrová, Š., Vaněk, T. et al. Responses of Wetland Plant Carex vulpina to Copper and Iron Nanoparticles. Water Air Soil Pollut 228, 258 (2017). https://doi.org/10.1007/s11270-017-3436-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3436-z

Keywords

Navigation