Skip to main content

Advertisement

Log in

Toxicity of Cu and Cr Nanoparticles to Daphnia magna

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Little is known about the potential toxicity of Cu nanoparticles (nCu), Cr nanoparticles (nCr), and their mixtures to aquatic organisms. To fill this gap, a comprehensive toxicity assessment was conducted using Daphnia magna as a test organism, including a 48-h acute toxicity test, a 21-day chronic test, and a feeding experiment. Four biomarkers were estimated after exposure to nCu, nCr, and their mixtures for 7 days, including acetylcholinesterase (AChE), catalase (CAT), superoxide dismutase (SOD), and glutathione S-transferase (GST). The results at all endpoints showed that nCu was more toxic than nCr. The 48-h median lethal concentration values of nCu and nCr were 0.63 and 1.57 mg/L, respectively. Significant inhibition of reproduction and growth of D. magna was found, and the intrinsic rate of natural increase was a sensitive parameter for nCu and nCr during the 21-day exposure. A concentration-dependent decrease in filtration and ingestion was observed which was consistent with inhibition of reproduction and growth of D. magna. The biochemical responses revealed an increase in GST activity and decrease in AChE activity, while SOD and CAT activities were increased at low concentrations and decreased at high concentrations for all exposures. Collectively, our results confirmed that nanoscale Cu and Cr can exert negative effects at different levels on D. magna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AC01769567, A. (Ed.). (1996). Technical guidance document in support of Commission directive 93 67 EEC on risk assessment for new notified substances and Commission regulation (EC) No. 1488 94 on risk assessment for existing substances. Office for Official Publ. of the European Communities.

  • Ates, M., Demir, V., Arslan, Z., Camas, M., & Celik, F. (2016). Toxicity of engineered nickel oxide and cobalt oxide nanoparticles to Artemia salina in seawater. Water, Air, & Soil Pollution, 227(3), 1–8.

    Article  CAS  Google Scholar 

  • Baun, A., Hartmann, N. B., Grieger, K., & Kusk, K. O. (2008). Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology, 17(5), 387–395.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.

    Article  CAS  Google Scholar 

  • Campos, B., Rivetti, C., Rosenkranz, P., Navas, J. M., & Barata, C. (2013). Effects of nanoparticles of TiO2 on food depletion and life-history responses of Daphnia magna. Aquatic Toxicology, 130, 174–183.

    Article  Google Scholar 

  • Canesi, L., Fabbri, R., Gallo, G., Vallotto, D., Marcomini, A., & Pojana, G. (2010). Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60 fullerene, Nano-TiO2, Nano-SiO2). Aquatic Toxicology, 100(2), 168–177.

    Article  CAS  Google Scholar 

  • Chen, G., Vijver, M. G., & Peijnenburg, W. J. (2015). Summary and analysis of the currently existing literature data on metal-based nanoparticles published for selected aquatic organisms: applicability for toxicity prediction by (Q) SARs. Alternatives to Laboratory Animals, 43(4), 221–240.

    Google Scholar 

  • Chio, C. P., Chen, W. Y., Chou, W. C., Hsieh, N. H., Ling, M. P., & Liao, C. M. (2012). Assessing the potential risks to zebrafish posed by environmentally relevant copper and silver nanoparticles. Science of the Total Environment, 420, 111–118.

    Article  CAS  Google Scholar 

  • de Rossetto, A. L., Melegari, S. P., Ouriques, L. C., & Matias, W. G. (2014). Comparative evaluation of acute and chronic toxicities of CuO nanoparticles and bulk using Daphnia magna and Vibrio fischeri. Science of the Total Environment, 490, 807–814.

    Article  CAS  Google Scholar 

  • Da Cuna, R. H., Vazquez, G. R., Piol, M. N., Guerrero, N. V., Maggese, M. C., & Nostro, F. L. L. (2011). Assessment of the acute toxicity of the organochlorine pesticide endosulfan in Cichlasoma dimerus (Teleostei, Perciformes). Ecotoxicology and Environmental Safety, 74(4), 1065–1073.

    Article  Google Scholar 

  • Dominguez, G. A., Lohse, S. E., Torelli, M. D., Murphy, C. J., Hamers, R. J., Orr, G., & Klaper, R. D. (2015). Effects of charge and surface ligand properties of nanoparticles on oxidative stress and gene expression within the gut of Daphnia magna. Aquatic Toxicology, 162, 1–9.

    Article  CAS  Google Scholar 

  • Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95.

    Article  CAS  Google Scholar 

  • Eyckmans, M., Celis, N., Horemans, N., Blust, R., & De Boeck, G. (2011). Exposure to waterborne copper reveals differences in oxidative stress response in three freshwater fish species. Aquatic Toxicology, 103(1), 112–120.

    Article  CAS  Google Scholar 

  • Fan, W. H., Tang, G. E., Zhao, C. M., Duan, Y., & Zhang, R. (2009). Metal accumulation and biomarker responses in Daphnia magna following cadmium and zinc exposure. Environmental Toxicology and Chemistry, 28(2), 305–310.

    Article  CAS  Google Scholar 

  • Gauld, D. T. (1951). The grazing rate of planktonic copepods. Journal of the Marine Biological Association of the United Kingdom, 29(03), 695–706.

    Article  Google Scholar 

  • Geller, W., & Müller, H. (1981). The filtration apparatus of Cladocera: filter mesh-sizes and their implications on food selectivity. Oecologia, 49(3), 316–321.

    Article  Google Scholar 

  • Gomes, T., Pinheiro, J. P., Cancio, I., Pereira, C. G., Cardoso, C., & Bebianno, M. J. (2011). Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis. Environmental Science and Technology, 45(21), 9356–9362.

    Article  CAS  Google Scholar 

  • Gomes, S. I., Novais, S. C., Gravato, C., Guilhermino, L., Scott-Fordsmand, J. J., Soares, A. M., & Amorim, M. J. (2012). Effect of Cu-nanoparticles versus one Cu-salt: analysis of stress biomarkers response in Enchytraeus albidus (Oligochaeta). Nanotoxicology, 6(2), 134–143.

    Article  CAS  Google Scholar 

  • Goth, L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta, 196(2–3), 143–151.

    Article  CAS  Google Scholar 

  • Guo, F., Wang, L., & Wang, W. X. (2012). Acute and chronic toxicity of polychlorinated biphenyl 126 to Tigriopus japonicus: effects on survival, growth, reproduction, and intrinsic rate of population growth. Environmental Toxicology and Chemistry, 31(3), 639–645.

    Article  CAS  Google Scholar 

  • Habig, W. H., & Jakoby, W. B. (1981). Assays for differentiation of glutathione S-transferases. Methods in Enzymology, 77, 398–405.

    Article  CAS  Google Scholar 

  • Hanazato, T. (2001). Pesticide effects on freshwater zooplankton: an ecological perspective. Environmental Pollution, 112(1), 1–10.

    Article  CAS  Google Scholar 

  • Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H. C., & Kahru, A. (2008). Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 71(7), 1308–1316.

    Article  CAS  Google Scholar 

  • Horie, M., Nishio, K., Endoh, S., Kato, H., Fujita, K., Miyauchi, A., & Yoshida, Y. (2013). Chromium (III) oxide nanoparticles induced remarkable oxidative stress and apoptosis on culture cells. Environmental Toxicology, 28(2), 61–75.

    Article  CAS  Google Scholar 

  • Jing, G., Li, Y., Xie, L., & Zhang, R. (2006). Metal accumulation and enzyme activities in gills and digestive gland of pearl oyster (Pinctada fucata) exposed to copper. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 144(2), 184–190.

    Google Scholar 

  • Kaweeteerawat, C., Chang, C. H., Roy, K. R., Liu, R., Li, R., Toso, D., & Zhou, Z. H. (2015). Cu nanoparticles have different impacts in Escherichia coli and Lactobacillus brevis than their microsized and ionic analogues. ACS Nano, 9(7), 7215–7225.

    Article  CAS  Google Scholar 

  • Kim, K. T., Klaine, S. J., Lin, S., Ke, P. C., & Kim, S. D. (2010a). Acute toxicity of a mixture of copper and single-walled carbon nanotubes to Daphnia magna. Environmental Toxicology & Chemistry, 29(1), 122–126.

    Article  CAS  Google Scholar 

  • Kim, K. T., Klaine, S. J., Cho, J., Kim, S. H., & Kim, S. D. (2010b). Oxidative stress responses of Daphnia magna exposed to TiO2 nanoparticles according to size fraction. Science of the Total Environment, 408(10), 2268–2272.

    Article  CAS  Google Scholar 

  • Klaper, R., Crago, J., Barr, J., Arndt, D., Setyowati, K., & Chen, J. (2009). Toxicity biomarker expression in daphnids exposed to manufactured nanoparticles: changes in toxicity with functionalization. Environmental Pollution, 157(4), 1152–1156.

    Article  CAS  Google Scholar 

  • Kubota, S., Morioka, T., Takesue, M., Hayashi, H., Watanabe, M., & Smith, R. L. (2014). Continuous supercritical hydrothermal synthesis of dispersible zero-valent copper nanoparticles for ink applications in printed electronics. The Journal of Supercritical Fluids, 86, 33–40.

    Article  CAS  Google Scholar 

  • Kumari, K., Khare, A., & Dange, S. (2014). The applicability of oxidative stress biomarkers in assessing chromium induced toxicity in the fish Labeo rohita. BioMed Research International, 2014.

  • Lee, B., Duong, C. N., Cho, J., Lee, J., Kim, K., Seo, Y., & Yoon, J. (2012). Toxicity of citrate-capped silver nanoparticles in common carp (Cyprinus carpio). BioMed Research International, 2012.

  • Li, N., Hao, M., Phalen, R. F., Hinds, W. C., & Nel, A. E. (2003). Particulate air pollutants and asthma: a paradigm for the role of oxidative stress in PM-induced adverse health effects. Clinical Immunology, 109(3), 250–265.

    Article  CAS  Google Scholar 

  • Li, F., Lei, C., Shen, Q., Li, L., Wang, M., Guo, M., & Yao, S. (2013). Analysis of copper nanoparticles toxicity based on a stress-responsive bacterial biosensor array. Nanoscale, 5(2), 653–662.

    Article  CAS  Google Scholar 

  • Li, L., Fernández-Cruz, M. L., Connolly, M., Schuster, M., & Navas, J. M. (2015). Dissolution and aggregation of Cu nanoparticles in culture media: effects of incubation temperature and particles size. Journal of Nanoparticle Research, 17(1), 1–11.

    Article  Google Scholar 

  • Lotka, A. J. (1913). A natural population norm I & II. Washington Academy of Sciences.

  • Madhavi, V., Reddy, A. V. B., Reddy, K. G., Madhavi, G., & Prasad, T. N. K. V. (2013). An overview on research trends in remediation of chromium. Research Journal of Recent Sciences ISSN, 2277, 2502.

  • Manke, A., Wang, L., & Rojanasakul, Y. (2013). Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Research International, 2013.

  • Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47(3), 469–474.

    Article  CAS  Google Scholar 

  • Mendonça, E., Diniz, M., Silva, L., Peres, I., Castro, L., Correia, J. B., & Picado, A. (2011). Effects of diamond nanoparticle exposure on the internal structure and reproduction of Daphnia magna. Journal of Hazardous Materials, 186(1), 265–271.

    Article  Google Scholar 

  • Meng, H., Xia, T., George, S., & Nel, A. E. (2009). A predictive toxicological paradigm for the safety assessment of nanomaterials. ACS Nano, 3(7), 1620–1627.

    Article  CAS  Google Scholar 

  • Miao, L., Wang, C., Hou, J., Wang, P., Ao, Y., Dai, S., & Lv, B. (2015). Effects of pH and natural organic matter (NOM) on the adsorptive removal of CuO nanoparticles by periphyton. Environmental Science and Pollution Research, 22(10), 7696–7704.

    Article  CAS  Google Scholar 

  • Moore, M. N. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environment International, 32(8), 967–976.

    Article  CAS  Google Scholar 

  • Mourente, G., Dıaz-Salvago, E., Bell, J. G., & Tocher, D. R. (2002). Increased activities of hepatic antioxidant defence enzymes in juvenile gilthead sea bream (Sparus aurata L.) fed dietary oxidised oil: attenuation by dietary vitamin E. Aquaculture, 214(1), 343–361.

    Article  CAS  Google Scholar 

  • Mwaanga, P., Carraway, E. R., & van den Hurk, P. (2014). The induction of biochemical changes in Daphnia magna by CuO and ZnO nanoparticles. Aquatic Toxicology, 150, 201–209.

    Article  CAS  Google Scholar 

  • OECD. (2004). Guideline for Testing of Chemicals—Daphnia magna acute immobilization test 202.

  • OECD. (2008). Guideline for Testing of Chemicals—Daphnia magna reproduction test 211.

  • Oukarroum, A., Samadani, M., & Dewez, D. (2014). Influence of pH on the toxicity of silver nanoparticles in the green alga Chlamydomonas acidophila. Water, Air, & Soil Pollution, 225(8), 1–8.

    Article  CAS  Google Scholar 

  • Papageorgiou, I., Yin, Z., Ladon, D., Baird, D., Lewis, A. C., Sood, A., & Case, C. P. (2007). Genotoxic effects of particles of surgical cobalt chrome alloy on human cells of different age in vitro. Mutation Research, 619(1), 45–58.

    Article  CAS  Google Scholar 

  • Piddington, D. L., Fang, F. C., Laessig, T., Cooper, A. M., Orme, I. M., & Buchmeier, N. A. (2001). Cu, Zn superoxide dismutase of Mycobacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst. Infection and Immunity, 69(8), 4980–4987.

    Article  CAS  Google Scholar 

  • Porter, K. G., Orcutt, J. D., & Gerritsen, J. (1983). Functional response and fitness in a generalist filter feeder, Daphnia magna (Cladocera: Crustacea). Ecology, 64(4), 735–742.

    Article  Google Scholar 

  • Ramírez-Prieto, M. T., García-Río, F., & Villamor, J. (2006). Role of oxidative stress in respiratory diseases and its monitoring. Medicina Clínica, 127(10), 386–396.

    Article  Google Scholar 

  • Ruppert, E. E., & Fox, R. S. (2004). Invertebrate zoology: a functional evolutionary approach (of RD Barnes’ Invertebrate Zoology). Belmont, CA: Brooks/Cole.

    Google Scholar 

  • Santo, N., Fascio, U., Torres, F., Guazzoni, N., Tremolada, P., Bettinetti, R., & Bacchetta, R. (2014). Toxic effects and ultrastructural damages to Daphnia magna of two differently sized ZnO nanoparticles: does size matter? Water Research, 53, 339–350.

    Article  CAS  Google Scholar 

  • Song, L., Vijver, M. G., Peijnenburg, W. J., Galloway, T. S., & Tyler, C. R. (2015a). A comparative analysis on the in vivo toxicity of copper nanoparticles in three species of freshwater fish. Chemosphere, 139, 181–189.

    Article  CAS  Google Scholar 

  • Song, L., Vijver, M. G., de Snoo, G. R., & Peijnenburg, W. J. (2015b). Assessing toxicity of copper nanoparticles across five cladoceran species. Environmental Toxicology and Chemistry, 34(8), 1863–1869.

    Article  CAS  Google Scholar 

  • Song, L., Vijver, M. G., & Peijnenburg, W. J. (2015c). Comparative toxicity of copper nanoparticles across three Lemnaceae species. Science of the Total Environment, 518, 217–224.

    Article  Google Scholar 

  • Soomro, R. A., Sherazi, S. H., Memon, N., Shah, M. R., Kalwar, N. H., Hallam, K. R., & Shah, A. (2014). Synthesis of air stable copper nanoparticles and their use in catalysis. Advanced Materials Letters, 5(4), 191–198.

    Article  Google Scholar 

  • Tan, L. Y., Huang, B., Xu, S., Wei, Z. B., Yang, L. Y., & Miao, A. J. (2016). TiO2 nanoparticle uptake by the water flea Daphnia magna via different routes is calcium-dependent. Environmental Science and Technology, 50(14), 7799–7807.

    Article  CAS  Google Scholar 

  • Tanaka, Y. (2003). Ecological risk assessment of pollutant chemicals: extinction risk based on population-level effects. Chemosphere, 53(4), 421–425.

    Article  CAS  Google Scholar 

  • Teli, M. D., & Sheikh, J. (2013). Modified bamboo rayon–copper nanoparticle composites as antibacterial textiles. International Journal of Biological Macromolecules, 61, 302–307.

    Article  CAS  Google Scholar 

  • Ulm, L., Krivohlavek, A., Jurašin, D., Ljubojević, M., Šinko, G., Crnković, T., & Vrček, I. V. (2015). Response of biochemical biomarkers in the aquatic crustacean Daphnia magna exposed to silver nanoparticles. Environmental Science and Pollution Research, 22(24), 19990–19999.

    Article  CAS  Google Scholar 

  • USEPA. (1998). SCE policy issues related to the food quality protection act. Office of pesticide programs science policy on the use of cholinesterase inhibition for risk assessment of organophosphate and carbamate pesticides.

  • Vale, G., Mehennaoui, K., Cambier, S., Libralato, G., Jomini, S., & Domingos, R. F. (2016). Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: a critical overview. Aquatic Toxicology, 170, 162–174.

    Article  CAS  Google Scholar 

  • Van Leeuwen, C. J., Luttmer, W. J., & Griffioen, P. S. (1985). The use of cohorts and populations in chronic toxicity studies with Daphnia magna: a cadmium example. Ecotoxicology and Environmental Safety, 9(1), 26–39.

    Article  Google Scholar 

  • Vieira, L. R., Sousa, A., Frasco, M. F., Lima, I., Morgado, F., & Guilhermino, L. (2008). Acute effects of benzo [a] pyrene, anthracene and a fuel oil on biomarkers of the common goby Pomatoschistus microps (Teleostei, Gobiidae). Science of the Total Environment, 395(2), 87–100.

    Article  CAS  Google Scholar 

  • Villarroel, M. J., Sancho, E., Ferrando, M. D., & Andreu, E. (2003). Acute, chronic and sublethal effects of the herbicide propanil on Daphnia magna. Chemosphere, 53(8), 857–864.

    Article  CAS  Google Scholar 

  • Wang, Z., Zhao, J., Li, F., Gao, D., & Xing, B. (2009). Adsorption and inhibition of acetylcholinesterase by different nanoparticles. Chemosphere, 77(1), 67–73.

    Article  CAS  Google Scholar 

  • Wang, T., Long, X., Cheng, Y., Liu, Z., & Yan, S. (2014). The potential toxicity of copper nanoparticles and copper sulphate on juvenile Epinephelus coioides. Aquatic Toxicology, 152, 96–104.

  • Wang, D., Lin, Z., Wang, T., Yao, Z., Qin, M., Zheng, S., & Lu, W. (2016). Where does the toxicity of metal oxide nanoparticles come from: the nanoparticles, the ions, or a combination of both? Journal of Hazardous Materials, 308, 328–334.

    Article  CAS  Google Scholar 

  • Xia, J., Zhao, H., & Lu, G. (2013). Effects of selected metal oxide nanoparticles on multiple biomarkers in Carassius auratus. Biomedical and Environmental Sciences, 26(9), 742–749.

    CAS  Google Scholar 

  • Xiao, Y., Vijver, M. G., Chen, G., & Peijnenburg, W. J. (2015). Toxicity and accumulation of Cu and ZnO nanoparticles in Daphnia magna. Environmental Science and Technology, 49(7), 4657–4664.

    Article  CAS  Google Scholar 

  • Xie, Z., Lu, G., Li, S., Nie, Y., Ma, B., & Liu, J. (2015). Behavioral and biochemical responses in freshwater fish Carassius auratus exposed to sertraline. Chemosphere, 135, 146–155.

    Article  CAS  Google Scholar 

  • Xiong, D., Fang, T., Yu, L., Sima, X., & Zhu, W. (2011). Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Science of the Total Environment, 409(8), 1444–1452.

    Article  CAS  Google Scholar 

  • Xu, Y., Wang, C., Hou, J., Dai, S., Wang, P., Miao, L., & You, G. (2016). Effects of ZnO nanoparticles and Zn2+ on fluvial biofilms and the related toxicity mechanisms. Science of the Total Environment, 544, 230–237.

    Article  CAS  Google Scholar 

  • Yu, T., Greish, K., McGill, L. D., Ray, A., & Ghandehari, H. (2012). Influence of geometry, porosity, and surface characteristics of silica nanoparticles on acute toxicity: their vasculature effect and tolerance threshold. ACS Nano, 6(3), 2289–2301.

    Article  CAS  Google Scholar 

  • Zhao, H., Lu, G., Xia, J., & Jin, S. (2012). Toxicity of nanoscale CuO and ZnO to Daphnia magna. Chemical Research in Chinese Universities, 28(2), 209–213.

    CAS  Google Scholar 

  • Zhu, X., Chang, Y., & Chen, Y. (2010). Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere, 78(3), 209–215.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (grant 51609066), the National Science Funds for Creative Research Groups of China (grant 51421006), the Support Program for the Yarlung Zangbo Scholars of XiZang Agriculture and Animal Husbandry College (grant 2015XYA01), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Fundamental Research Funds for the Central Universities (grant 2016B43914).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghua Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, G., Yang, H., Xia, J. et al. Toxicity of Cu and Cr Nanoparticles to Daphnia magna . Water Air Soil Pollut 228, 18 (2017). https://doi.org/10.1007/s11270-016-3206-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3206-3

Keywords

Navigation