Skip to main content
Log in

Immobilization of Lead by Alishewanella sp. WH16-1 in Pot Experiments of Pb-Contaminated Paddy Soil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study investigates the effectiveness and mechanism of decreasing the bioavailability of Pb in bacterial culture and in pot experiments of Pb-contaminated paddy soil by Alishewanella sp. WH16-1. The WH16-1 strain was isolated from mine soil and exhibited high resistances to many heavy metals, especially to Pb2+ (2070 mg/L) and Cr (VI) (2340 mg/L). During cultivation of the WH16-1 strain with the addition of 100 mg/L Pb2+, Pb2+ was precipitated, and 84.13 % of Pb2+ was removed in 72 h. The precipitant was observed by transmission electron microscopy (TEM) and further confirmed to be PbS by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The WH16-1 strain was incubated in Pb2+-added paddy soil pot experiments for 60 days and compared with the uninoculated Pb2+-added paddy soil. Comparison showed that the exchangeable and carbonate-bound Pb in the paddy soil decreased by 14.04 and 10.69 % (P < 0.05), respectively. The Fe-Mn oxide-bound Pb, organic matter-bound Pb and the residual Pb increased by 4.47, 19.40, and 22.78 % (P < 0.05), respectively. Compared with the uninoculated Pb2+-added paddy soil, the dry weight of rice significantly increased by 28.59 %, and the Pb concentrations in rice, husk, leaves, and culms in Pb2+-added paddy soil pot experiment incubated with the WH16-1 strain significantly decreased by 26.18, 26.94, 26.61, and 25.56 % (P < 0.05), respectively. These results suggest that Alishewanella sp. WH16-1 can reduce the bioavailability of Pb in soil. This bacterium may be applicable for the biological stabilization of Pb in Pb-contaminated paddy soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Administration of Quality Supervision, Inspection and Quarantine of China (AQSIQ). (2001). Safety qualification for agricultural product-safety requirements for non-environmental pollution vegetable (GB18406.1-2001) (in Chinese).

  • Alam, M. Z., Ahmad, S., & Malik, A. (2011). Prevalence of heavy metal resistance in bacteria isolated from tannery effluents and affected soil. Environmental Monitoring and Assessment, 178(1-4), 281–291.

    Article  CAS  Google Scholar 

  • Bian, B., suo Wu, H., Lv, L., Fan, Y., & Lu, H. (2015). Health risk assessment of metals in food crops and related soils amended with biogas slurry in Taihu Basin: perspective from field experiment. Environmental Science and Pollution Research, 22(18), 14358–14366.

    Article  CAS  Google Scholar 

  • Boudrahem, F., Aissani-Benissad, F., & Soualah, A. (2011). Adsorption of lead (II) from aqueous solution by using leaves of date trees as an adsorbent. Journal of Chemical & Engineering Data, 56(5), 1804–1812.

    Article  CAS  Google Scholar 

  • Chen, Y., Shen, Z., & Li, X. (2004). The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Applied Geochemistry, 19(10), 1553–1565.

    Article  CAS  Google Scholar 

  • Çolak, F., Atar, N., Yazıcıoğlu, D., & Olgun, A. (2011). Biosorption of lead from aqueous solutions by Bacillus strains possessing heavy-metal resistance. Chemical Engineering Journal, 173, 422–428.

    Article  Google Scholar 

  • Dudka, S., Piotrowska, M., & Chlopecka, A. (1994). Effect of elevated concentrations of Cd and Zn in soil on spring wheat yield and the metal contents of the plants. Water, Air, and Soil Pollution, 76(3-4), 333–341.

    Article  CAS  Google Scholar 

  • Friesl, W., Lombi, E., Horak, O., & Wenzel, W. W. (2003). Immobilization of heavy metals in soils using inorganic amendments in a greenhouse study. Journal of Plant Nutrition and Soil Science, 166(2), 191–196.

    Article  CAS  Google Scholar 

  • Gadd, G. M. (2010). Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology, 156(3), 609–643.

    Article  CAS  Google Scholar 

  • Hassen, A., Saidi, N., Cherif, M., & Boudabous, A. (1998). Resistance of environmental bacteria to heavy metals. Bioresource Technology, 64(1), 7–15.

    Article  CAS  Google Scholar 

  • Kamnev, A. A., Renou‐Gonnord, M. F., Antonyuk, L. P., Colina, M., Chernyshev, A. V., Frolov, I., & Ignatov, V. V. (1997). Spectroscopic characterization of the uptake of essential and xenobiotic metal cations in cells of the soil bacterium Azospirillum brasilense. Biochemistry and Molecular Biology International, 41(1), 123–130.

    CAS  Google Scholar 

  • Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., & Chun, J. (2012). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International Journal of Systematic and Evolutionary Microbiology, 62(3), 716–721.

    Article  CAS  Google Scholar 

  • Kuyucak, N., & Volesky, B. (1989). The mechanism of cobalt biosorption. Biotechnology and Bioengineering, 33(7), 823–831.

    Article  CAS  Google Scholar 

  • Liang, X., Xu, Y., Wang, L., Sun, Y., Lin, D., Sun, Y., & Wan, Q. (2013). Sorption of Pb 2+ on mercapto functionalized sepiolite. Chemosphere, 90(2), 548–555.

    Article  CAS  Google Scholar 

  • Liao, S., Liu, G., Zhu, D., Li, Y., Ren, L., & Cui, J. (2011). Characterization and properties of boron-doped aluminum hydroxide for Mn2+ adsorption and soil acidification. Environmental Earth Sciences, 62(5), 1047–1054.

    Article  CAS  Google Scholar 

  • Li, J., Wang, Q., Li, M., Yang, B., Shi, M., Guo, W., & Wang, G. (2015). Proteomics and genetics for identification of a bacterial antimonite oxidase in Agrobacterium tumefaciens. Environmental Science & Technology. doi:10.1021/es506318b.

    Google Scholar 

  • Loukidou, M. X., Matis, K. A., Zouboulis, A. I., & Liakopoulou-Kyriakidou, M. (2003). Removal of As (V) from wastewaters by chemically modified fungal biomass. Water Research, 37(18), 4544–4552.

    Article  CAS  Google Scholar 

  • Luo, S., Xu, X., Zhou, G., Liu, C., Tang, Y., & Liu, Y. (2014). Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb (II) from wastewater. Journal of Hazardous Materials, 274, 145–155.

    Article  CAS  Google Scholar 

  • Márquez-Reyes, J. M., López-Chuken, U. J., Valdez-González, A., & Luna-Olvera, H. A. (2013). Removal of chromium and lead by a sulfate-reducing consortium using peat moss as carbon source. Bioresource Technology, 144, 128–134.

    Article  Google Scholar 

  • Ministry of Environmental Protection of China (MEP). (2008). Environmental quality standards for soils (GB15618-2008) (in Chinese).

  • Mozafari, M., & Moztarzadeh, F. (2010). Controllable synthesis, characterization and optical properties of colloidal PbS/gelatin core-shell nanocrystals. Journal of Colloid and Interface Science, 351(2), 442–448.

    Article  CAS  Google Scholar 

  • Mudhoo, A., Garg, V. K., & Wang, S. (2012). Removal of heavy metals by biosorption. Environmental Chemistry Letters, 10(2), 109–117.

    Article  CAS  Google Scholar 

  • Shim, J., Babu, A. G., Velmurugan, P., Shea, P. J., & Oh, B. T. (2014). Pseudomonas fluorescens JH 70-4 promotes Pb stabilization and early seedling growth of Sudan grass in contaminated mining site soil. Environmental Technology, 35(20), 2589–2596.

    Article  CAS  Google Scholar 

  • Shuman, L. M. (1999). Organic waste amendments effect on zinc fractions of two soils. Journal of Environmental Quality, 28(5), 1442–1447.

    Article  CAS  Google Scholar 

  • Siripornadulsil, S., & Siripornadulsil, W. (2013). Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: potential for microbial bioremediation. Ecotoxicology and Environmental Safety, 94, 94–103.

    Article  CAS  Google Scholar 

  • Sreejalekshmi, K. G., Krishnan, K. A., & Anirudhan, T. S. (2009). Adsorption of Pb (II) and Pb (II)-citric acid on sawdust activated carbon: kinetic and equilibrium isotherm studies. Journal of Hazardous Materials, 161(2), 1506–1513.

    Article  CAS  Google Scholar 

  • Sun, Y., Li, Y., Xu, Y., Liang, X., & Wang, L. (2015). In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite. Applied Clay Science, 105, 200–206.

    Article  Google Scholar 

  • Takahashi, M., Ohshima, Y., Nagata, K., & Furuta, S. (1993). Electrodeposition of PbS films from acidic solution. Journal of Electroanalytical Chemistry, 359(1), 281–286.

    Article  CAS  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24(8), 1596–1599.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.

    Article  CAS  Google Scholar 

  • The Ministry of Environmental Protection and the Ministry of Land. (2014). The National Survey Bulletin Soil Pollution.

    Google Scholar 

  • Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24), 4876–4882.

    Article  CAS  Google Scholar 

  • Uchimiya, M., Lima, I. M., Thomas Klasson, K., Chang, S., Wartelle, L. H., & Rodgers, J. E. (2010). Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. Journal of Agricultural and Food Chemistry, 58(9), 5538–5544.

    Article  CAS  Google Scholar 

  • Wilson, K. H., Blitchington, R. B., & Greene, R. C. (1990). Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. Journal of Clinical Microbiology, 28(9), 1942–1946.

    CAS  Google Scholar 

  • Xiang, Y., Xiang, Y., Wang, L., & Zhang, Z. (2016). Effects of modified excess sludge on the growth of artemisia ordosica and transformation of heavy metals. Water, Air, & Soil Pollution, 227(4), 1–9.

    Article  Google Scholar 

  • Yu, D., Wang, D., Meng, Z., Lu, J., & Qian, Y. (2002). Synthesis of closed PbS nanowires with regular geometric morphologies. Journal of Materials Chemistry, 12(3), 403–405.

    Article  CAS  Google Scholar 

  • Zeng, L., Liao, M., Chen, C., & Huang, C. (2007). Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil–lead–rice (Oryza sativa L.) system. Ecotoxicology and Environmental Safety, 67, 67–74.

    Article  CAS  Google Scholar 

  • Zouboulis, A. I., Loukidou, M. X., & Matis, K. A. (2004). Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochemistry, 39(8), 909–916.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Fundamental Research Funds for the Central Universities (Grant No. 2013PY122) and the National Natural Science Foundation of China (Grant No. 41171213 and 31010103903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuijiao Liao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 188 kb)

ESM 2

(DOC 27 kb)

ESM 3

(DOC 28 kb)

ESM 4

(DOC 34 kb)

ESM 5

(DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Xia, X., Wang, H. et al. Immobilization of Lead by Alishewanella sp. WH16-1 in Pot Experiments of Pb-Contaminated Paddy Soil. Water Air Soil Pollut 227, 339 (2016). https://doi.org/10.1007/s11270-016-3040-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3040-7

Keywords

Navigation