Skip to main content

Advertisement

Log in

BOO induces fibrosis and EMT in urothelial cells which can be recapitulated in vitro through elevated storage and voiding pressure cycles

  • Urology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

To determine the unique contributions from elevated voiding and storage pressures in the development of fibrosis and the epithelial-to-mesenchymal transition (EMT) in urothelial cells, and how progressive BOO pressure cycling is an important mechanical cue leading to these pathological changes.

Materials and methods

Urothelial cells isolated from control, SHAM, 2 (acute)- or 6 (chronic)-week BOO rats treated with an inflammasome inhibitor or no drug. Total RNA was isolated and RT-PCR was conducted with custom primers for pro-fibrotic and EMT genes. In separate experiments, a rat urothelial cell line was exposed to cyclic pressure regimes characteristic of acute and chronic BOO in the presence or absence of an inflammasome inhibitor. Following exposure, RT-PCR was conducted, collagen content was determined and intracellular caspase-1 activity was measured.

Results

Urothelial cells isolated from acute and chronic BOO rat models demonstrated expression of pro-fibrotic and EMT genes. Similarly, MYP3 rat urothelial cells subjected to pressure cycling regimes that reflect intravesical pressures in the acute or chronic BOO bladder also demonstrated increased expression of pro-fibrotic and EMT genes, along with elevated soluble collagen. Treatment with inflammasome inhibitors reduced expression of pro-fibrotic genes in the rat model and pressure cycling model but had a limited effect on EMT.

Conclusion

These results indicate that acute and chronic BOO pressure cycling are essential in the initiation and progression of fibrosis in the bladder via the NLRP3 inflammasome, but also provide new evidence that there is also an alternative NLRP3-independent pathway leading to EMT and fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Irwin DE, Milsom I, Kopp Z, Abrams P, Artibani W, Herschorn S (2009) Prevalence, severity, and symptom bother of lower urinary tract symptoms among men in the EPIC study: impact of overactive bladder. Eur Urol 56:14–20

    Article  PubMed  Google Scholar 

  2. Irwin DE, Milsom I, Hunskaar S, Reilly K, Kopp Z, Herschorn S, Coyne K, Kelleher C, Hampel C, Artibani W (2006) Population-based survey of urinary incontinence, overactive bladder, and other lower urinary tract symptoms in five countries: results of the EPIC study. Eur Urol 50:1306–1315

    Article  PubMed  Google Scholar 

  3. Hughes FM, Sexton SJ, Jin H, Govada V, Purves JT (2017) Bladder fibrosis during outlet obstruction is triggered through the NLRP3 inflammasome and the production of IL-1β. Am J Physiol Physiol 313:F603–F610

    Article  CAS  Google Scholar 

  4. Lepor H (2007) Alpha blockers for the treatment of benign prostatic hyperplasia. Rev Urol 9:181

    PubMed  PubMed Central  Google Scholar 

  5. Andersson K-E, Gratzke C (2007) Pharmacology of α1-adrenoceptor antagonists in the lower urinary tract and central nervous system. Nat Clin Pract Urol 4:368

    Article  CAS  PubMed  Google Scholar 

  6. Chai TC, Gemalmaz H, Andersson K-E, Tuttle JB, Steers WD (1999) Persistently increased voiding frequency despite relief of bladder outlet obstruction. J Urol 161:1689–1693

    Article  CAS  PubMed  Google Scholar 

  7. Jin L-H, Andersson K-E, Han J-U, Kwon Y-H, Park C-S, Shin H-Y, Yoon S-M, Lee T (2011) Persistent detrusor overactivity in rats after relief of partial urethral obstruction. Am J Physiol Integr Comp Physiol 301:R896–R904

    Article  CAS  Google Scholar 

  8. Blatt AH, Brammah S, Tse V, Chan L (2012) Transurethral prostate resection in patients with hypocontractile detrusor—what is the predictive value of ultrastructural detrusor changes? J Urol 188:2294–2299

    Article  PubMed  Google Scholar 

  9. Bosch R, Abrams P, Averbeck MA, Finazzi Agró E, Gammie A, Marcelissen T, Solomon E (2019) Do functional changes occur in the bladder due to bladder outlet obstruction? Neurourol Urodyn 38(Suppl 5):S56–S65

    PubMed  PubMed Central  Google Scholar 

  10. Holmdahl G, Sillen U, Bachelard M, Hansson E, Hermansson G, Hjalmas K, Bauer SB (1995) The changing urodynamic pattern in valve bladders during infancy. J Urol 153:463–467

    Article  CAS  PubMed  Google Scholar 

  11. Petrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J (2007) Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 14:1583–1589

    Article  CAS  PubMed  Google Scholar 

  12. Lamkanfi M, Mueller JL, Vitari AC, Misaghi S, Fedorova A, Deshayes K, Lee WP, Hoffman HM, Dixit VM (2009) Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J Cell Biol 187:61–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hughes FM, Hill HM, Wood CM, Edmondson AT, Dumas A, Foo W-C, Oelsen JM, Rac G, Purves JT (2016) The NLRP3 inflammasome mediates inflammation produced by bladder outlet obstruction. J Urol 195:1598–1605

    Article  CAS  PubMed  Google Scholar 

  14. Dunton CL, Purves JT, Hughes FM, Jin H, Nagatomi J (2018) Elevated hydrostatic pressure stimulates ATP release which mediates activation of the NLRP3 inflammasome via P2X4 in rat urothelial cells. Int Urol Nephrol 50:1607–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tekgul S, Yoshino K, Bagli D, Carr MC, Mitchell ME, Yao LY (1996) Collagen types I and III localization by in situ hybridization and immunohistochemistry in the partially obstructed young rabbit bladder. J Urol 156:582–586

    Article  CAS  PubMed  Google Scholar 

  16. Schröder A, Kirwan TP, Jiang J-X, Aitken KJ, Bägli DJ (2013) Rapamycin attenuates bladder hypertrophy during long-term outlet obstruction in vivo: tissue, matrix and mechanistic insights. J Urol 189:2377–2384

    Article  PubMed  CAS  Google Scholar 

  17. Iguchi N, Hou A, Koul HK, Wilcox DT (2014) Partial bladder outlet obstruction in mice may cause E-cadherin repression through hypoxia induced pathway. J Urol 192:964–972

    Article  CAS  PubMed  Google Scholar 

  18. Islam SS, Mokhtari RB, El Hout Y, Azadi MA, Alauddin M, Yeger H, Farhat WA (2014) TGF-β1 induces EMT reprogramming of porcine bladder urothelial cells into collagen producing fibroblasts-like cells in a Smad2/Smad3-dependent manner. J Cell Commun Signal 8:39–58

    Article  PubMed  Google Scholar 

  19. Sharif-Afshar A-R, Donohoe JM, Pope JC, Adams MC, Brock JW, Bhowmick NA (2005) Stromal hyperplasia in male bladders upon loss of transforming growth factor-β signaling in fibroblasts. J Urol 174:1704–1707

    Article  CAS  PubMed  Google Scholar 

  20. Baskin LS, Hayward SW, Young P, Cunha GR (1996) Role of mesenchymal-epithelial interactions in normal bladder development. J Urol 156:1820–1827

    Article  CAS  PubMed  Google Scholar 

  21. Geng H, Zhao L, Liang Z, Zhang Z, Xie D, Bi L, Wang Y, Zhang T, Cheng L, Yu D (2015) ERK5 positively regulates cigarette smoke-induced urocystic epithelial-mesenchymal transition in SV-40 immortalized human urothelial cells. Oncol Rep 34:1581–1588

    Article  CAS  PubMed  Google Scholar 

  22. Orlichenko LS, Radisky DC (2008) Matrix metalloproteinases stimulate epithelial-mesenchymal transition during tumor development. Clin Exp Metastasis 25:593–600

    Article  CAS  PubMed  Google Scholar 

  23. Hughes FM Jr, Sexton SJ, Ledig PD, Yun CE, Jin H, Purves JT (2019) Bladder decompensation and reduction in nerve density in a rat model of chronic bladder outlet obstruction are attenuated with the NLRP3 inhibitor glyburide. Am J Physiol Physiol 316:F113–F120

    Article  CAS  Google Scholar 

  24. Hughes FM Jr, Vivar NP, Kennis JG, Pratt-Thomas JD, Lowe DW, Shaner BE, Nietert PJ, Spruill LS, Purves JT (2014) Inflammasomes are important mediators of cyclophosphamide-induced bladder inflammation. Am J Physiol Physiol 306:F299–F308

    Article  CAS  Google Scholar 

  25. Cohen SM, Arnold LL, Uzvolgyi E, Cano M, St-John M, Yamamoto S, Lu X, Le XC (2002) Possible role of dimethylarsinous acid in dimethylarsinic acid-induced urothelial toxicity and regeneration in the rat. Chem Res Toxicol 15:1150–1157

    Article  CAS  PubMed  Google Scholar 

  26. Nascimento MG, Suzuki S, Wei M, Tiwari A, Arnold LL, Lu X, Le XC, Cohen SM (2008) Cytotoxicity of combinations of arsenicals on rat urinary bladder urothelial cells in vitro. Toxicology 249:69–74

    Article  CAS  PubMed  Google Scholar 

  27. Kawamata H, Kameyama S, Nan L, Kawai K, Oyasu R (1993) Effect of epidermal growth factor and transforming growth factor β1 on growth and invasive potentials of newly established rat bladder carcinoma cell lines. Int J Cancer 55:968–973

    Article  CAS  PubMed  Google Scholar 

  28. Hughes FM, Turner DP, Todd Purves J (2015) The potential repertoire of the innate immune system in the bladder: expression of pattern recognition receptors in the rat bladder and a rat urothelial cell line (MYP3 cells). Int Urol Nephrol 47:1953–1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stover J, Nagatomi J (2007) Cyclic pressure stimulates DNA synthesis through the PI3K/AKT signaling pathway in rat bladder smooth muscle cells. Ann Biomed Eng 35:1585–1594

    Article  PubMed  Google Scholar 

  30. Hughes FM, Vivar NP, Kennis JG, Pratt-Thomas JD, Lowe DW, Shaner BE, Nietert PJ, Spruill LS, Purves JT (2013) Inflammasomes are important mediators of cyclophosphamide-induced bladder inflammation. Am J Physiol Physiol 306:F299–F308

    Article  CAS  Google Scholar 

  31. Choo MS, Moon J-H, Lee HK, Lee MJ, Lee SH, Han JH, Choi SH (2017) MP94-14 urodynamic evaluation of da-8010 in conscious rats with partial bladder outlet obstruction. J Urol 197:e1251–e1251

    Article  CAS  Google Scholar 

  32. Liu Q, Luo D, Yang T, Liao B, Li H, Wang K-J (2017) Protective effects of antimuscarinics on the bladder remodeling after bladder outlet obstruction. Cell Physiol Biochem 44:907–919

    Article  CAS  PubMed  Google Scholar 

  33. Malkowicz SB, Wein AJ, Elbadawi A, Arsdalen KV, Ruggieri MR, Levin RM (1986) Acute biochemical and functional alterations in the partially obstructed rabbit urinary bladder. J Urol 136:1324–1329

    Article  CAS  PubMed  Google Scholar 

  34. Metcalfe PD, Wang J, Jiao H, Huang Y, Hori K, Moore RB, Tredget EE (2010) Bladder outlet obstruction: progression from inflammation to fibrosis. BJU Int 106:1686–1694

    Article  PubMed  Google Scholar 

  35. Lee SD, Akbal C, Miseeri R, Jung C, Rink R, Kaefer M (2006) Collagen prolyl 4-hydroxylase is up-regulated in an acute bladder outlet obstruction. J Pediatr Urol 2:225–232

    Article  PubMed  Google Scholar 

  36. Rubinstein M, Sampaio FJ, Costa WS (2007) Stereological study of collagen and elastic system in the detrusor muscle of bladders from controls and patients with infravesical obstruction. Int Braz J Urol 33:33–41

    Article  PubMed  Google Scholar 

  37. Mirone V, Imbimbo C, Sessa G, Palmieri A, Longo N, Granata AM, Fusco F (2004) Correlation between detrusor collagen content and urinary symptoms in patients with prostatic obstruction. J Urol 172:1386–1389

    Article  CAS  PubMed  Google Scholar 

  38. Barbosa JABA, Reis ST, Nunes M, Ferreira YA, Leite KR, Nahas WC, Srougi M, Antunes AA (2017) The obstructed bladder: expression of collagen, matrix metalloproteinases, muscarinic receptors, and angiogenic and neurotrophic factors in patients with benign prostatic hyperplasia. Urology 106:167–172

    Article  PubMed  Google Scholar 

  39. Kim JC, Yoon JY, Seo SI, Hwang TK, Park YH (2000) Effects of partial bladder outlet obstruction and its relief on types I and III collagen and detrusor contractility in the rat. Neurourol Urodyn Off J Int Cont Soc 19:29–42

    Article  CAS  Google Scholar 

  40. Kadam R, Wiafe B, Metcalfe PD (2020) Mesenchymal stem cells ameliorate partial bladder outlet obstruction-induced epithelial-mesenchymal transition type II independent of mast cell recruitment and degranulation. Can Urol Assoc J 15:E29

    Article  PubMed Central  Google Scholar 

  41. Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481:278–286

    Article  CAS  PubMed  Google Scholar 

  42. Xu J, Lamouille S, Derynck R (2009) TGF-β-induced epithelial to mesenchymal transition. Cell Res 19:156–172

    Article  CAS  PubMed  Google Scholar 

  43. Tian R, Zhu Y, Yao J, Meng X, Wang J, Xie H, Wang R (2017) NLRP3 participates in the regulation of EMT in bleomycin-induced pulmonary fibrosis. Exp Cell Res 357:328–334

    Article  CAS  PubMed  Google Scholar 

  44. Wang W, Wang X, Chun J, Vilaysane A, Clark S, French G, Bracey NA, Trpkov K, Bonni S, Duff HJ, Beck PL, Muruve DA (2013) Inflammasome-independent nlrp3 augments tgf-β signaling in kidney epithelium. J Immunol 190:1239–1249

    Article  CAS  PubMed  Google Scholar 

  45. Wang N, Duan L, Ding J, Cao Q, Qian S, Shen H, Qi J (2019) MicroRNA-101 protects bladder of BOO from hypoxia-induced fibrosis by attenuating TGF-β-smad2/3 signaling. IUBMB Life 71:235–243

    CAS  PubMed  Google Scholar 

  46. Wiafe B, Adesida A, Churchill T, Adewuyi EE, Li Z, Metcalfe P (2017) Hypoxia-increased expression of genes involved in inflammation, dedifferentiation, pro-fibrosis, and extracellular matrix remodeling of human bladder smooth muscle cells. Vitr Cell Dev Biol Anim 53:58–66

    Article  CAS  Google Scholar 

Download references

Funding

Grants: NIH (R01DK103534, P20GM103444, P20GM121342), NSF (1264579).

Author information

Authors and Affiliations

Authors

Contributions

CLD, JTP, FMH and JN conceived the project; CLD, JTP, FMH and JN designed the experiments; CLD and FMH performed the experiments; CLD analyzed the data; CLD, JTP, FMH and JN interpreted the results of experiments; CLD prepared the figures; CLD drafted the manuscript; CLD, JTP, FMH and JN edited and revised the manuscript CLD, JTP, FMH and JN approved the final version of the manuscript.

Corresponding author

Correspondence to Jiro Nagatomi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunton, C.L., Purves, J.T., Hughes, F.M. et al. BOO induces fibrosis and EMT in urothelial cells which can be recapitulated in vitro through elevated storage and voiding pressure cycles. Int Urol Nephrol 53, 2007–2018 (2021). https://doi.org/10.1007/s11255-021-02942-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-021-02942-3

Keywords

Navigation