Skip to main content
Log in

Classical M. A. Buhl Problem, Its Pfeiffer–Sato Solutions, and the Classical Lagrange–D’Alembert Principle for the Integrable Heavenly-Type Nonlinear Equations

  • Published:
Ukrainian Mathematical Journal Aims and scope

The survey is devoted to old and recent investigations of the classical M. A. Buhl problem of description of the compatible linear vector field equations and their general Pfeiffer and modern Lax–Sato-type special solutions. In particular, we analyze the related Lie-algebraic structures and the properties of integrability for a very interesting class of nonlinear dynamical systems called dispersion-free heavenly-type equations, which were introduced by Plebański and later analyzed in a series of papers. The AKS-algebraic and related R-structure schemes are used to study the orbits of the corresponding coadjoint actions intimately connected with the classical Lie–Poisson structures on them. It is shown that their compatibility condition coincides with the corresponding heavenly-type equations under consideration. It is also demonstrated that all these equations are originated in the indicated way and can be represented as a Lax compatibility condition for specially constructed loop vector fields on the torus. The infinite hierarchy of conservations laws related to the heavenly equations is described and its analytic structure connected with the Casimir invariants is indicated. In addition, we present typical examples of equations of this kind demonstrating in detail their integrability via the scheme proposed in the paper. The relationship between a very interesting Lagrange–d’Alembert-type mechanical interpretation of the devised integrability scheme and the Lax–Sato equations is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abraham and J. Marsden, Foundations of Mechanics, 2nd Ed., New York: Benjamin Cummings (1986).

    Google Scholar 

  2. L. M. Alonso and A. B. Shabat, “Hydrodynamic reductions and solutions of a universal hierarchy,” Theor. Math. Phys., 104, 1073–1085 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  3. V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer, New York (1978).

    Book  MATH  Google Scholar 

  4. D. Blackmore and A. K. Prykarpatsky, “Dark equations and their light integrability,” J. Nonlin. Math. Phys., 21, No. 3, 407–428 (2014).

    Article  MathSciNet  Google Scholar 

  5. D. Blackmore, A. K. Prykarpatsky, and V. H. Samoylenko, Nonlinear Dynamical Systems of Mathematical Physics,World Scientific, New York (2011).

    Book  MATH  Google Scholar 

  6. M. Błaszak, “Classical R-matrices on Poisson algebras and related dispersionless systems,” Phys. Lett. A, 297, No. 3-4, 191–195 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Błaszak and B. M. Szablikowski, “Classical R-matrix theory of dispersionless systems: II. (2 + 1)-dimension theory,” J. Phys. A: Math. Gen., 35 (2002).

  8. L. V. Bogdanov, “Interpolating differential reductions of multidimensional integrable hierarchies,” Teor. Mat. Fiz., 167, No. 3, 354–363 (2011).

    Article  MathSciNet  Google Scholar 

  9. L. V. Bogdanov, V. S. Dryuma, and S. V. Manakov, “Dunajski generalization of the second heavenly equation: dressing method and the hierarchy,” J. Phys. A: Math. Theor., 40, 14383–14393 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  10. L. V. Bogdanov and B. G. Konopelchenko, “On the heavenly equation and its reductions,” J. Phys. A: Math. Gen., 39, 11793–11802 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  11. L. V. Bogdanov and M. V. Pavlov, Linearly Degenerate Hierarchies of Quasiclassical Sdym Type, arXiv: 1603.00238v2 [nlin.SI] 15 March 2016.

  12. M. A. Buhl, “Surles operateurs differentieles permutables ou non,” Bull. Sci. Math., 2, 353–361 (1928).

    MATH  Google Scholar 

  13. M. A. Buhl, “Aperçus modernes sur la théorie des groupes continue et finis,” Mem. Sci. Math., 33 (1928).

  14. A. Cartan, Differential Forms, Dover Publications (1971).

  15. E. A. Coddington and N. Levinson, “Theory of ordinary differential equations,” International Series in Pure and Applied Mathematics, McGraw-Hill, New York (1955).

  16. B. Doubrov and E. V. Ferapontov, “On the integrability of symplectic Monge–Ampère equations,” J. Geom. Phys., 60, No. 10, 1604–1616 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Dunajski, “Anti-self-dual four-manifolds with a parallel real spinor,” Proc. Roy. Soc. Edinburgh Sect. A, 458 (2002).

  18. M. Dunajski and W. Kryński, Einstein–Weyl Geometry, Dispersionless Hirota Equation and Veronese Webs, arXiv: 1301.0621.

  19. M. Dunajski, L. J. Mason, and P. Tod, “Einstein–Weyl geometry, the dKP equation, and twistor theory,” J. Geom. Phys., 37, No. 1, 63–93 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  20. E. V. Ferapontov, A. Moro, and V. V. Sokolov, “Hamiltonian systems of hydrodynamic type in (2 + 1)-dimensions,” Comm. Math. Phys., 285, 31–65 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  21. E. V. Ferapontov and J. Moss, Linearly Degenerate PDEs and Quadratic Line Complexes, arXiv: 1204.2777v1 [math. DG], 12 April 2012.

  22. I. M. Gelfand and D. B. Fuchs, “Cohomology of the Lie algebra of vector fields on the circle,” Funct. Anal. Appl., 2, No. 4, 342–343 (1968).

    Article  Google Scholar 

  23. C. Godbillon, Géométrie Différentielle et Mécanique Analytique, Hermann, Paris (1969).

    MATH  Google Scholar 

  24. O. E. Hentosh, Ya. A. Prykarpatsky, D. Blackmore, and A. K. Prykarpatski, “Lie-algebraic structure of Lax–Sato integrable heavenly equations and the Lagrange–d’Alembert principle,” J. Geom. Phys., 120, 208–227 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  25. B. G. Konopelchenko, Grassmanians Gr(N −1,N+1), Closed Differential N −1 Forms, and N-Dimensional Integrable Systems, arXiv: 1208.6129v2 [nlin. SI] 5 March 2013.

  26. I. M. Krichever, “The function of the universal Whitham hierarchy, matrix models and topological field theories,” Comm. Pure Appl. Math., 47, 437–475 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  27. B. Kruglikov and O. Morozov, Integrable Dispersionless PDE in 4D, Their Symmetry Pseudogroups, and Deformations, arXiv: 1410.7104v2 [math-ph] 11 February 2015.

  28. P. P. Kulish, “An analogue of the Korteweg–de Vries equation for the superconformal algebra,” in: Different. Geometry, Lie Groups, and Mech. Pt VIII: Zap. Nauchn. Semin. LOMI, 155 (1986), pp. 142–149.

  29. B. A. Kupershmidt, “Dark equations,” J. Nonlin. Math. Phys., 8, 363–445 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  30. B. A. Kupershmidt, “Mathematics of dispersive water waves,” Comm. Math. Phys., 99, 51–73 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  31. S. V. Manakov and P. M. Santini, “On the solutions of the second heavenly and Pavlov equations,” J. Phys. A: Math. Theor., 42, 11 p. (2009).

    MathSciNet  MATH  Google Scholar 

  32. S. V. Manakov and P. M. Santini, “Cauchy problem on the plane for the dispersionless Kadomtsev–Petviashvili equation,” JETP Lett., 83, 462–466 (2006).

    Article  Google Scholar 

  33. M. Manas, E. Medina, and L. Martinez-Alonso, “On the Whitham hierarchy: dressing scheme, string equations, and additional symmetries,” J. Phys. A: Math. Gen., 39, 2349–2381 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  34. O. I. Morozov, “A two-component generalization of the integrable rd-Dym equation,” SIGMA, 8, 051–056 (2012).

    MATH  Google Scholar 

  35. O. I. Morozov and A. Sergyeyev, The Four-Dimensional Martinez–Alonso–Shabat Equation: Reductions, Nonlocal Symmetries, and a Four-Dimensional Integrable Generalization of the ABC Equation, 11 p. (2014), Preprint submitted to JGP.

  36. V. G. Mikhalev, “On the Hamiltonian formalism for Korteweg–de Vries type hierarchies,” Funct. Anal. Appl., 26, Issue 2, 140–142 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  37. G. Misiolek, “A shallow water equation as a geodesic flow on the Bott–Virasoro group,” J. Geom. Phys., 24, No. 3, 203–208 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  38. S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: the Inverse Scattering Method, Springer (1984).

  39. P. Olver, Applications of Lie Groups to Differential Equations, 2nd ed., Springer-Verlag, New York (1993).

    Book  MATH  Google Scholar 

  40. V. Ovsienko, Bi-Hamilton Nature of the Equation u tx = u xy u y − u yy u x, arXiv: 0802.1818v1 [math-ph] 13 February 2008.

  41. V. Ovsienko and C. Roger, “Looped cotangent Virasoro algebra and nonlinear integrable systems in dimension 2 + 1,” Comm. Math. Phys., 273, 357–378 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  42. M. V. Pavlov, “Integrable hydrodynamic chains,” J. Math. Phys., 44, No. 9, 4134–4156 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  43. M. V. Pavlov, Integrable Dispersive Chains and Energy Dependent Schrödinger Operator, arXiv: 1402.3836v2 [nlin. SI] 2 March 2014.

  44. M. V. Pavlov, “Classification of integrable Egorov hydrodynamic chains,” Theor. Math. Phys., 138, 45–58 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  45. G. Pfeiffer, “Généralisation de la méthode de Jacobi pour l’intégration des systèms complets des équations linéaires et homogènes,” Compt. Rend. Acad. Sci., 190, 405–409 (1930).

    MATH  Google Scholar 

  46. M. G. Pfeiffer, “Sur les opérateurs d’un système complet d’équations linéaires et homogènes aux dérivées partielles du premier ordre à une fonction inconnue,” Compt. Rend. Acad. Sci., 190, 909–911 (1930).

    MATH  Google Scholar 

  47. M. G. Pfeiffer, “La généralization de méthode de Jacobi–Mayer,” Compt. Rend. Acad. Sci., 191, 1107–1109 (1930).

    MATH  Google Scholar 

  48. M. G. Pfeiffer, “Sur la permutation des solutions d’une équation linéaire aux dérivées partielles du premier ordre,” Bull. Sci. Math., 52, 353–361 (1928).

    MATH  Google Scholar 

  49. M. G. Pfeiffer, “Quelgues additions au probl`eme de M. Buhl,” Atti Congr. Intern. Mat. Bologna, 3, 45–46 (1928).

    Google Scholar 

  50. M. G. Pfeiffer, “La construction des opérateurs d’une équation linéaire, homogène aux dérivées partielles du premier ordre,” J. Cycle Math. Acad. Sci. Ukraine, No. 1, 37–72 (1931).

    MATH  Google Scholar 

  51. J. F. Plebański, “Some solutions of complex Einstein equations,” J. Math. Phys., 16, No. 12, 2395–2402 (1975).

    Article  MathSciNet  Google Scholar 

  52. C. Popovici, “Sur les fonctions adjointes de M. Buhl,” Compt. Rend., 45, 749 (1907).

    MATH  Google Scholar 

  53. A. K. Prykarpatsky and I. V. Mykytyuk, Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds: Classical and Quantum Aspects, Kluwer AP, Dordrecht, Netherlands (1998).

    Book  Google Scholar 

  54. Ya. A. Prykarpatsky and A. K. Prykarpatski, The Integrable Heavenly Type Equations and Their Lie-Algebraic Structure, arXiv: 1785057 [nlin. SI] 24 January 2017.

  55. Ya. A. Prykarpatsky and A. M. Samoilenko, Algebraic-Analytic Aspects of Integrable Nonlinear Dynamical Systems and Their Perturbations [in Ukrainian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv, Vol. 41 (2002).

  56. A. G. Reyman and M. A. Semenov-Tian-Shansky, Integrable Systems [in Russian], Institute for Computer Studies, Moscow–Izhevsk (2003).

    MATH  Google Scholar 

  57. M. Sato and Y. Sato, “Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold,” Nonlinear Partial Different. Equat. Appl. Sci. (Proc. U. S.–Japan Sem., Tokyo (1982)): Lect. Notes Numer. Anal., 5, 259–271 (1982).

    MathSciNet  MATH  Google Scholar 

  58. M. Sato and M. Noumi, “Soliton equations and the universal Grassmann manifolds,” Sophia Univ. Kokyuroku Math., 18 (1984).

  59. W. K. Schief, “Self-dual Einstein spaces via a permutability theorem for the Tzitzeica equation,” Phys. Lett. A, 223, No. 1-2, 55–62 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  60. W. K. Schief, “Self-dual Einstein spaces and a discrete Tzitzeica equation. A permutability theorem link,” in: Symmetries and Integrability of Difference Equations, P. Clarkson and F. Nijhoff (eds.), London Math. Soc., Lect. Notes Ser., 255 (1999), pp. 137–148.

  61. A. Sergyeyev and B. M. Szablikowski, “Central extensions of cotangent universal hierarchy: (2+1)-dimensional bi-Hamiltonian systems,” Phys. Lett. A, 372, 7016–7023 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  62. B. Szablikowski, “Hierarchies of Manakov–Santini type by means of Rota–Baxter and other identities,” SIGMA, 12, 14 p. (2016).

    MathSciNet  MATH  Google Scholar 

  63. B. M. Szablikowski and M. Błaszak, “Meromorphic Lax representations of (1+1)-dimensional multi-Hamiltonian dispersionless systems,” J. Math. Phys., 47, No. 9 (2006).

  64. M. A. Semenov-Tian-Shansky, “What is a classical R-matrix?,” Funct. Anal. Appl., 17, No. 4, 259–272 (1983).

  65. M. B. Sheftel, A. A. Malykh, and D. Yazıcı , Recursion Operators and bi-Hamiltonian Structure of the General Heavenly Equation, arXiv: 1510.03666v3 [math-ph], January 25, 2016.

  66. K. Takasaki and T. Takebe, “SDiff(2) Toda equation—hierarchy, Tau function, and symmetries,” Lett. Math. Phys., 23, No. 3, 205–214 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  67. K. Takasaki and T. Takebe, “Integrable hierarchies and dispersionless limit,” Rev. Math. Phys., 7, No. 5, 743–808 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  68. L. A. Takhtajan and L. D. Faddeev, Hamiltonian Approach in Soliton Theory, Springer, Berlin–Heidelberg (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 69, No. 12, pp. 1652–1689, December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prykarpatskyy, Y.A., Samoilenko, A.M. Classical M. A. Buhl Problem, Its Pfeiffer–Sato Solutions, and the Classical Lagrange–D’Alembert Principle for the Integrable Heavenly-Type Nonlinear Equations. Ukr Math J 69, 1924–1967 (2018). https://doi.org/10.1007/s11253-018-1480-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-018-1480-5

Navigation