Skip to main content

Time-Periodic Linearized Navier–Stokes Equations: An Approach Based on Fourier Multipliers

  • Chapter
  • First Online:
Particles in Flows

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

Abstract

The Stokes and Oseen linearizations of the time-periodic Navier–Stokes equations in the n-dimensional whole space for n ≥ 2 are investigated. An approach based on Fourier multipliers is introduced to establish \(\mathrm{L}^{q}\) estimates and to identify function spaces of maximal regularity for the corresponding operators. Moreover, the representation of a solution in terms of a Fourier multiplier is used to introduce the concept of a time-periodic fundamental solution. The main idea is to replace the time axis by a torus group and to study the system in a setting of functions defined on a locally compact abelian group G. For this purpose, we develop the required formalism. More specifically, we introduce the space \(\mathcal{S}(G)\) of Schwartz-Bruhat functions and investigate the Stokes and Oseen systems in the corresponding space of tempered distributions \(\mathcal{S^{{\prime}}}(G)\). Moreover, we give a detailed proof of the so-called Transference Principle, which enables us to employ Fourier multipliers in a group setting in order to establish \(\mathrm{L}^{q}\) estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We make use of the Einstein summation convention and implicitly sum over all repeated indices.

References

  1. N. Bourbaki, Éléments de mathématique. Fasc. XXXII. Théories spectrales. Actualités Scientifiques et Industrielles, No. 1332 (Hermann, Paris, 1967)

    Google Scholar 

  2. F. Bruhat, Distributions sur un groupe localement compact et applications à l’étude des représentations des groupes -adiques. Bull. Soc. Math. Fr. 89, 43–75 (1961)

    Article  MATH  Google Scholar 

  3. K. de Leeuw, On L p multipliers. Ann. Math. (2) 81, 364–379 (1965)

    Google Scholar 

  4. R.E. Edwards, G.I. Gaudry, Littlewood-Paley and Multiplier Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 90 (Springer, Berlin, 1977)

    Google Scholar 

  5. T. Eiter, M. Kyed, Estimates of time-periodic fundamental solutions to the linearized Navier–Stokes equations. J. Math. Fluid Mech. (2017). doi:10.1007/s00021-017-0332-7

    Google Scholar 

  6. G.P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-State Problems, 2nd edn. (Springer, New York, 2011)

    Google Scholar 

  7. A.M. Gleason, Groups without small subgroups. Ann. Math. (2) 56, 193–212 (1952)

    Google Scholar 

  8. L. Grafakos, Classical Fourier Analysis, 2nd edn. (Springer, New York, 2008)

    MATH  Google Scholar 

  9. L. Grafakos, Modern Fourier Analysis, 2nd edn. (Springer, New York, 2009)

    Book  MATH  Google Scholar 

  10. E. Hewitt, K.A. Ross, Abstract Harmonic Analysis. Volume II: Structure and Analysis for Compact Groups. Analysis on Locally Compact Abelian Groups. Grundlehren der mathematischen Wissenschaften, vol. 152 (Springer, Berlin, 1970)

    Google Scholar 

  11. E. Hewitt, K.A. Ross, Abstract Harmonic Analysis. Volume I: Structure of Topological Groups, Integration Theory, Group Representations, 2nd edn. Grundlehren der Mathematischen Wissenschaften, vol. 115 (Springer, Berlin, 1979)

    Google Scholar 

  12. M. Kyed, Time-periodic solutions to the Navier-Stokes equations. Habilitationsschrift, Technische Universität Darmstadt (2012)

    MATH  Google Scholar 

  13. M. Kyed, Existence and regularity of time-periodic solutions to the three-dimensional Navier–Stokes equations. Nonlinearity 27(12), 2909–2935 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Kyed, Maximal regularity of the time-periodic linearized Navier–Stokes system. J. Math. Fluid Mech. 16(3), 523–538 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Kyed, A fundamental solution to the time-periodic Stokes equations. J. Math. Anal. Appl. 437(1), 708–719 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Larsen, An Introduction to the Theory of Multipliers. Die Grundlehren der mathematischen Wissenschaften, Band 175 (Springer, New York, 1971)

    Google Scholar 

  17. Y. Maekawa, J. Sauer, Maximal regularity of the time-periodic stokes operator on unbounded and bounded domains. J. Math. Soc. Jpn. (2016, to appear)

    Google Scholar 

  18. M.S. Osborne, On the Schwartz-Bruhat space and the Paley-Wiener theorem for locally compact abelian groups. J. Funct. Anal. 19, 40–49 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  19. W. Rudin, Fourier Analysis on Groups. Interscience Tracts in Pure and Applied Mathematics, vol. 12 (Interscience Publishers (a division of Wiley), New York, 1962)

    Google Scholar 

  20. J. Sauer, An extrapolation theorem in non-euclidean geometries and its application to partial differential equations. J. Elliptic Parabol. Equ. 1, 403–418 (2015)

    Article  MathSciNet  Google Scholar 

  21. J. Sauer, Weighted resolvent estimates for the spatially periodic stokes equations. Ann. Univ. Ferrara 61(2), 333–354 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Sauer, Maximal regularity of the spatially periodic stokes operator and application to nematic liquid crystal flows. Czechoslov. Math. J. 66(1), 41–55 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. H.H. Schaefer, M.P. Wolff, Topological Vector Spaces, 2nd edn. Graduate Texts in Mathematics, vol. 3 (Springer, New York, 1999)

    Google Scholar 

  24. E.M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, NJ, 1970)

    MATH  Google Scholar 

  25. M. Stroppel, Locally Compact Groups. EMS Textbooks in Mathematics (European Mathematical Society, Zürich, 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Eiter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Eiter, T., Kyed, M. (2017). Time-Periodic Linearized Navier–Stokes Equations: An Approach Based on Fourier Multipliers. In: Bodnár, T., Galdi, G., Nečasová, Š. (eds) Particles in Flows. Advances in Mathematical Fluid Mechanics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-60282-0_2

Download citation

Publish with us

Policies and ethics