Skip to main content
Log in

The Effect of Changing Fingerprinting Directions on Finger Friction

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The contact characteristic between finger and objects changes due to the different deformation of a fingerprint when the finger slides in different directions. To understand this mechanism better, a new type of experimental setup was designed, and specific tests were conducted. We analyzed the regularity of the friction coefficient in two sliding directions. When the finger was sliding on surfaces with different roughness values, normal forces, and contact angles, the fingerprint deformation was captured by the Asana microscope. The following were inferred from the conducted experiments. Firstly, the friction coefficient decreases with increasing sample roughness and normal force. Secondly, the friction coefficient first decreases and then increases with increasing contact angle. Thirdly, the distance between the fingerprints increases when the finger is dragged, leading to an increase in contact area, thereby improving the friction coefficient. Finally, the result will be opposite to the previous inference when the finger is squeezed hard for fingerprinting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gitis, N., Sivamani, R.: Tribometrology of skin. Tribol. Trans. 47(4), 461–469 (2004)

    Article  Google Scholar 

  2. PaillerMattéi, C., Zahouani, H.: Study of adhesion forces and mechanical properties of human skin in vivo. J. Adhes. Sci. Technol. 18(18), 1739–1758 (2004)

    Article  Google Scholar 

  3. Seo, N.J., Armstrong, T.J.: Friction coefficients in a longitudinal direction between the finger pad and selected materials for different normal forces and curvatures. Ergonomics 52(5), 609–616 (2009)

    Article  Google Scholar 

  4. Pataky, T.C., Latash, M.L., Zatsiorsky, V.M.: Viscoelastic response of the finger pad to incremental tangential displacements. J. Biomech. 38(7), 1441–1449 (2005)

    Article  Google Scholar 

  5. Jindrich, D.L., Zhou, Y.T., Dennerlein, J.T.: Non-linear viscoelastic models predict fingertip pulp force-displacement characteristics during voluntary tapping. J. Biomech. 36(4), 497–503 (2003)

    Article  Google Scholar 

  6. Derler, S., Rotaru, G.M.: Stick–slip phenomena in the friction of human skin. Wear 301(1–2), 324–329 (2013)

    Article  Google Scholar 

  7. Han, H. Y., Shimada, A., Kawamura, S.: Analysis of friction on human fingers and design of artificial fingers. IEEE international conference on robotics and automation. Proceedings IEEE, 1996, 3061–3066 (1996)

  8. Masen, M.A.: A systems based experimental approach to tactile friction. J. Mech. Behav. Biomed. Mater. 4(8), 1620–1626 (2011)

    Article  Google Scholar 

  9. Skedung, L., Danerlöv, K., Olofsson, U., Aikala, M., Niemi, K., Kettle, J., Rutland, M.W.: Finger friction measurements on coated and uncoated printing papers. Tribol. Lett. 37(2), 389–399 (2010)

    Article  Google Scholar 

  10. Fagiani, R., Massi, F., Chatelet, E., Costers, J.P., Berthier, Y.: Contact of a finger on rigid surfaces and textiles: friction coefficient and induced vibrations. Tribol. Lett. 48(2), 145–158 (2012)

    Article  Google Scholar 

  11. Pasumarty, S.M., Johnson, S.A., Watson, S.A., Adams, M.J.: Friction of the human finger pad: influence of moisture, occlusion and velocity. Tribol. Lett. 44(2), 117 (2011)

    Article  Google Scholar 

  12. Lin, H.T., Hong, T.F., Li, W.L.: Grip performance affected by water-induced wrinkling of fingers. Tribol. Lett. 58(3), 1–9 (2015)

    Article  Google Scholar 

  13. Derler, S., Gerhardt, L.C., Lenz, A., Bertaux, E., Hadad, M.: Friction of human skin against smooth and rough glass as a function of the contact pressure. Tribol. Int. 42(11), 1565–1574 (2009)

    Article  Google Scholar 

  14. Tomlinson, S.E., Lewis, R., Carré, M.J., Franklin, S.E.: Human finger friction in contacts with ridged surfaces. Wear 301(1–2), 330–337 (2013)

    Article  Google Scholar 

  15. Bobjer, O., Johansson, S.E., Piguet, S.: Friction between hand and handle. Effects of oil and lard on textured and non-textured surfaces; perception of discomfort. Appl. Ergon. 24(3), 190–202 (1993)

    Article  Google Scholar 

  16. Tomimoto, M.: The frictional pattern of tactile sensations in anthropomorphic fingertip. Tribol. Int. 44(11), 1340–1347 (2011)

    Article  Google Scholar 

  17. Gee, M.G., Tomlins, P., Calver, A., Darling, R.H., Rides, M.: A new friction measurement system for the frictional component of touch. Wear 259(7–12), 1437–1442 (2005)

    Article  Google Scholar 

  18. Bensmaia, S.J., Hollins, M.: The vibrations of texture. Somatosens. Mot. Res. 20(1), 33–43 (2003)

    Article  Google Scholar 

  19. Watanabe, T., Fukui, S.: A method for controlling tactile sensation of surface roughness using ultrasonic vibration. In: Proceedings—IEEE International Conference on Robotics and Automation, vol. 1, pp. 1134–1139 (1995)

  20. Lee, S., Kamijo, M., Honywood, M., Nishimatsu, T., Shimizu, Y.: Analysis of finger motion in evaluating the hand of a cloth using a glove-type measurement system. Text. Res. J. 77(77), 13–19 (2007)

    Article  Google Scholar 

  21. Derler, S., Schrade, U., Gerhardt, L.C.: Tribology of human skin and mechanical skin equivalents in contact with textiles. Wear 263(7–12), 1112–1116 (2007)

    Article  Google Scholar 

  22. Ramalho, A., Silva, C.L., Pais, A.A.C.C., Sousa, J.J.S.: In vivo friction study of human skin: influence of moisturizers on different anatomical sites. Wear 263(7), 1044–1049 (2007)

    Article  Google Scholar 

  23. Kim, M.S., Kim, I.Y., Park, Y.K., Lee, Y.Z.: The friction measurement between finger skin and material surfaces. Wear 301(1–2), 338–342 (2013)

    Article  Google Scholar 

  24. Tomlinson, S.E., Lewis, R., Liu, X., Texier, C., Carré, M.J.: Understanding the friction mechanisms between the human finger and flat contacting surfaces in moist conditions. Tribol. Lett. 41(1), 283–294 (2011)

    Article  Google Scholar 

  25. Zhang, S., Urribarri, A.R., Hurtado, M.M., Zeng, X.Q., Heide, E.V.D.: The role of the sliding direction against a grooved channel texture on tool steel: an experimental study on tactile friction. Int. J. Solids Struct. 56–57, 53–61 (2014)

    Google Scholar 

  26. Zahouani, H., Mezghani, S., Vargiolu, R., Hoc, T., Mansori, E.L.: Effect of roughness on vibration of human finger during a friction test. Wear 301(1–2), 343–352 (2013)

    Article  Google Scholar 

  27. Nonomura, Y., Fujii, T., Arashi, Y., Miura, T., Maeno, T., Tashiro, K., Kamikawa, Y., Monchi, R.: Tactile impression and friction of water on human skin. Coll Surf. B Biointerfaces 69(2), 264–267 (2009)

    Article  Google Scholar 

  28. Warman, P.H., Ennos, A.R.: Fingerprints are unlikely to increase the friction of primate fingerpads. J. Exp. Biol. 212(Pt 13), 2016–2022 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor G. X. Chen, of Southwest Jiaotong University, for helpful discussions. The authors are grateful for the financial support of the National Natural Science Foundation of China (No. 51675448, No. 51375408) and the Program for New Century Excellent Talents in University (NCET-13-0974).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Liang Mo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Mo, J.L., Xu, J.Y. et al. The Effect of Changing Fingerprinting Directions on Finger Friction. Tribol Lett 65, 60 (2017). https://doi.org/10.1007/s11249-017-0843-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-017-0843-7

Keywords

Navigation