Skip to main content
Log in

Friction of the Human Finger Pad: Influence of Moisture, Occlusion and Velocity

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The current paper describes an experimental study of the friction of the human finger pad. The data highlight the role of sweat secretion and contact occlusion in producing wide-ranging values for the coefficient of friction that are particularly sensitive to the tribological configuration, sliding velocity, surface roughness and porosity of the counterbody. In particular, the large coefficients of friction typically observed on dry smooth surfaces are associated with a relatively damp interface, and can be considerably reduced by either decreasing or increasing the interfacial moisture content or by surface roughening. It is concluded that the very large range in the values of the coefficient of friction reported in the literature mainly result from differences in occlusion time associated with different tribological configurations, as well as from variations in surface roughness and finger pad sweat rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Dowson, D.: Tribology and the skin surface. In: Wilhelm, K.-P., Elsner, P., Berardesca, E., Maibach, H.I. (eds.) Bioengineering of the Skin: Skin Surface Imaging and Analysis, pp. 159–180. CRC Press, New York (1997)

    Google Scholar 

  2. Sivamani, R.K., Maibach, H.I.: Tribology of skin. Proc. IMechE Part J: J. Eng. Tribol. 220, 729–737 (2006)

    Article  Google Scholar 

  3. Tomlinson, S.E., Lewis, R., Carré, M.J.: Review of the frictional properties of finger-object contact when gripping. Proc. IMechE Part J: J. Eng. Tribol. 221, 841–850 (2007)

    Article  Google Scholar 

  4. Seo, N.J., Armstrong, T.J., Drinkaus, P.: A comparison of two methods of measuring static coefficient of friction at low normal forces: a pilot study. Ergonomics 52, 121–135 (2009)

    Article  Google Scholar 

  5. Dowson, D., Neville, A.: Bio-tribology and bio-mimetics in the operating environment. Proc. IMechE Part J: J. Eng. Tribol. 220, 109–123 (2006)

    Article  Google Scholar 

  6. Derler, S., Schrade, U., Gerhardt, L.-C.: Tribology of human skin and mechanical skin equivalents in contact with textiles. Wear 263, 1112–1116 (2007)

    Article  CAS  Google Scholar 

  7. Tomlinson, S.E., Lewis, R., Ball, S., Yoxall, A., Carré, M.J.: Understanding the effect of finger-ball friction on the handling performance of rugby balls. Sports Eng. 11, 109–118 (2009)

    Article  Google Scholar 

  8. Kwiatkowska, M., Franklin, S.E., Hendriks, C.P., Kwiatkowski, K.: Friction and deformation behaviour of human skin. Wear 267, 1264–1273 (2009)

    Article  CAS  Google Scholar 

  9. Adams, M.J., Briscoe, B.J., Johnson, S.A.: Friction and lubrication of human skin. Tribol. Lett. 26, 239–253 (2007)

    Article  CAS  Google Scholar 

  10. Tomlinson, S.E., Lewis, R., Liu, X., Texier, C., Carré, M.J.: Understanding the friction mechanisms between the human finger and flat contacting surfaces in moist conditions. Tribol. Lett. 41, 283–294 (2011)

    Article  CAS  Google Scholar 

  11. Wolfram, L.J.: Friction of skin. J. Soc. Cosmet. Chem. 34, 465–476 (1983)

    Google Scholar 

  12. Johnson, S.A., Gorman, D.M., Adams, M.J., Briscoe, B.J.: The friction and lubrication of human stratum corneum. Tribol. Ser. 25, 663–672 (1993)

    Article  CAS  Google Scholar 

  13. Han, H.-Y., Shimada, A., Kawamura, S.: Analysis of friction on human fingers and design of artificial fingers. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3061–3066 (1996)

  14. Subramanyan, K., Misra, M., Mukherjee, S., Ananthapadmanabhan, K.P.: Advances in the material science of skin: a composite structure with multiple functions. MRS Bull. 32, 770–778 (2007)

    Article  Google Scholar 

  15. Kasting, G.B., Barai, N.D., Wang, T.-F., Nitsche, J.M.: Mobility of water in stratum corneum. J. Pharm. Sci. 92, 2326–2340 (2003)

    Article  CAS  Google Scholar 

  16. Park, A.C., Baddiel, C.B.: The effect of saturated salt solutions on the elastic properties of stratum corneum. J. Soc. Cosmet. Chem. 23, 471–479 (1972)

    CAS  Google Scholar 

  17. Caspers, P.J., Lucassen, G.W., Carter, E.A., Bruining, H.A., Puppels, G.J.: In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles. J. Invest. Dermatol. 116, 434–442 (2001)

    Article  CAS  Google Scholar 

  18. Egawa, M., Hirao, T., Takahashi, M.: In vivo estimation of stratum corneum thickness from water concentration profiles obtained with Raman spectroscopy. Acta Derm. Venereol. 87, 4–8 (2007)

    Article  Google Scholar 

  19. Crowther, J.M., Sieg, A., Blenkiron, P., Marcott, C., Matts, P.J., Kaczvinsky, J.R., Rawlings, A.V.: Measuring the effects of topical moisturizers on changes in stratum corneum thickness, water gradients and hydration in vivo. Br. J. Dermatol. 159, 567–577 (2008)

    CAS  Google Scholar 

  20. Egawa, M., Kajikawa, T.: Changes in the depth profile of water in the stratum corneum treated with water. Skin Res. Tech. 15, 242–249 (2009)

    Article  Google Scholar 

  21. Spurr, R.T.: Fingertip friction. Wear 39, 167–171 (1976)

    Article  Google Scholar 

  22. Gee, M.G., Tomlins, P., Calver, A., Darling, R.H., Rides, M.: A new friction measurement system for the frictional component of touch. Wear 259, 1437–1442 (2005)

    Article  CAS  Google Scholar 

  23. Warman, P.H., Ennos, A.R.: Fingerprints are unlikely to increase the friction of primate fingerpads. J. Exp. Biol. 212, 2016–2022 (2009)

    Article  Google Scholar 

  24. Li, F.-X., Margetts, S., Fowler, I.: Use of “chalk” in rock climbing: sine qua non or myth? J. Sports Sci. 19, 427–432 (2001)

    Article  CAS  Google Scholar 

  25. Tomlinson, S.E., Lewis, R., Carré, M.J.: Improving the understanding of grip. In: Fuss, F.K., Subic, A., Ujihashi, S. (eds.) The Impact of Technology in Sport II, pp. 129–134. Taylor and Francis, London (2008)

    Google Scholar 

  26. O’Meara, D.M., Smith, R.M.: Functional handgrip test to determine the coefficient of static friction at the hand/handle interface. Ergonomics 45, 717–731 (2002)

    Article  Google Scholar 

  27. Szabó, G.: The regional anatomy of the human integument with special reference to the distribution of hair follicles, sweat glands and melanocytes. Philos. Trans. R. Soc. Lond. B 252, 447–485 (1967)

    Article  Google Scholar 

  28. Mackenzie, C.L., Iberall, T.: The Grasping Hand. Elsevier, Amsterdam (1994)

    Google Scholar 

  29. Pinnagoda, J., Tupker, R.A., Agner, T., Serup, J.: Guidelines for transepidermal water loss (TEWL) measurement. Contact Dermatitis 22, 164–178 (1990)

    Article  CAS  Google Scholar 

  30. Yosipovitch, G., Maayan-Metzger, A., Merlob, P., Sirota, L.: Skin barrier properties in different body areas in neonates. Pediatrics 106, 105–108 (2000)

    Article  CAS  Google Scholar 

  31. Rogiers, V., and the EEMCO Group: EEMCO guidance for the assessment of transepidermal water loss in cosmetic sciences. Skin Pharmacol. Appl. Skin Physiol. 14, 117–128 (2001)

    Article  CAS  Google Scholar 

  32. Smith, A.M., Scott, S.H.: Subjective scaling of smooth surface friction. J. Neurophys. 75, 1957–1962 (1996)

    CAS  Google Scholar 

  33. Sivamani, R.K., Wu, G., Gitis, N.V., Maibach, H.I.: Tribological testing of skin products: gender, age, and ethnicity on the volar forearm. Skin Res. Tech. 9, 1–7 (2003)

    Article  Google Scholar 

  34. Hendriks, C.P., Franklin, S.E.: Influence of surface roughness, material and climate conditions on the friction of human skin. Tribol. Lett. 37, 361–373 (2010)

    Article  CAS  Google Scholar 

  35. Armstrong, T.J.: Mechanical considerations of skin in work. Am. J. Ind. Med. 8, 463–472 (1985)

    Article  CAS  Google Scholar 

  36. Xing, M., Pan, N., Zhong, W., Maibach, H.: Skin friction blistering: computer model. Skin Res. Tech. 13, 310–316 (2007)

    Article  Google Scholar 

  37. Gerhardt, L.-C., Mattle, N., Schrade, G.U., Spencer, N.D., Derler, S.: Study of skin-fabric interactions of relevance to decubitus: friction and contact-pressure measurements. Skin Res. Tech. 14, 77–88 (2008)

    Google Scholar 

  38. André, T., De Wan, M., Lefèvre, P., Thonnard, J.-L.: Moisture Evaluator: a direct measure of fingertip skin hydration during object manipulation. Skin Res. Tech. 14, 385–389 (2008)

    Article  Google Scholar 

  39. André, T., Lefèvre, P., Thonnard, J.-L.: Measurement and influence of the skin moisture in dexterous manipulation. In: Ferre, M. (ed.) Proc Eurohaptics 2008, Lecture Notes in Computer Science 5024, pp. 373–377. Springer, Berlin (2008)

    Google Scholar 

  40. André, T., Lefèvre, P., Thonnard, J.-L.: A continuous measure of fingertip friction during precision grip. J. Neurosci. Methods 179, 224–229 (2009)

    Article  Google Scholar 

  41. André, T., Lefèvre, P., Thonnard, J.-L.: Fingertip moisture is optimally modulated during object manipulation. J. Neurophys. 103, 402–408 (2010)

    Article  Google Scholar 

  42. Whitehouse, D.J.: Handbook of Surface Metrology. IOP Publishing, Bristol (1994)

    Google Scholar 

  43. Liu, X., Yue, Z., Cai, Z., Chetwynd, D.G., Smith, S.T.: Quantifying touch-feel perception: tribological aspects. Meas. Sci. Technol. 19, 084007 (2008)

    Article  Google Scholar 

  44. Dinç, O.S., Ettles, C.M., Calabrese, S.J., Scarton, H.A.: Some parameters affecting tactile friction. J. Tribol. 113, 512–517 (1991)

    Article  Google Scholar 

  45. Liao, J.-C.: Experimental investigation of frictional properties of the human finger pad. MSc Thesis, Massachusetts Institute of Technology (1998)

  46. Cohen, S.C., Tabor, D.: The friction and lubrication of polymers. Proc. R. Soc. Lond. A 291, 186–207 (1966)

    Article  CAS  Google Scholar 

  47. Bielfeldt, S., Schoder, V., Ely, U., van der Pol, A., de Sterke, J., Wilhem, K.-P.: Assessment of human stratum corneum thickness and its barrier properties by in vivo confocal Raman spectroscopy. IFSCC Mag. 12(1), 9–15 (2009)

    CAS  Google Scholar 

  48. Bergmann Tiest, W.M., Kappers, A.M.L.: Tactile perception of thermal diffusivity. Atten. Percept. Psychophys. 71, 481–489 (2009)

    Article  Google Scholar 

  49. Marin, E.: The role of thermal properties in periodic time-varying phenomena. Eur. J. Phys. 28, 429–445 (2007)

    Article  CAS  Google Scholar 

  50. Shao, F., Chen, X.-J., Barnes, C.J., Henson, B.: A novel tactile sensation measurement system for quantifying touch perception. Proc. IMechE Part H: J. Eng. Med. 224, 97–105 (2010)

    Article  CAS  Google Scholar 

  51. Papir, Y.S., Hsu, K.-H., Wildnauer, R.H.: The mechanical properties of stratum corneum 1. The effect of water and ambient temperature on the tensile properties of newborn rat stratum corneum. Biochim. Biophys. Acta 399, 170–180 (1975)

    CAS  Google Scholar 

  52. Sarda, A., Deterre, R., Vergneault, C.: Heat perception measurements of the different parts found in a car passenger compartment. Measurement 35, 65–75 (2004)

    Article  Google Scholar 

  53. Maeno, T., Kobayashi, K., Yamazaki, N.: Relationship between the structure of human finger tissue and the location of tactile receptors. JSME Int. J. Ser. C 41, 94–100 (1998)

    Google Scholar 

  54. Dussaud, A.D., Adler, P.M., Lips, A.: Liquid transport in the networked microchannels of the skin surface. Langmuir 19, 7341–7345 (2003)

    Article  CAS  Google Scholar 

  55. Derler, S., Gerhardt, L.-C., Lenz, A., Bertaux, E., Hadad, M.: Friction of human skin against smooth and rough glass as a function of contact pressure. Tribol. Int. 42, 1565–1574 (2009)

    Article  Google Scholar 

  56. Fruhstorfer, H., Abel, U., Garthe, C.-D., Knüttel, A.: Thickness of the stratum corneum of the volar fingertips. Clin. Anat. 13, 429–433 (2000)

    Article  CAS  Google Scholar 

  57. Gambichler, T., Moussa, G., Sand, M., Sand, D., Altmeyer, P., Hoffmann, K.: Applications of optical coherence tomography in dermatology. J. Dermatol. Sci. 40, 85–94 (2005)

    Article  Google Scholar 

  58. Ferreira, A.J., Winter, W.D.: The palmar sweat print: a methodological study. Psychosom. Med. 25, 377–384 (1963)

    CAS  Google Scholar 

  59. Adelman, S., Taylor, C.R., Heglund, N.C.: Sweating on paws and palms: what is its function? Am. J. Physiol. 229, 1400–1402 (1975)

    CAS  Google Scholar 

  60. Saigusa, H., Ueda, Y., Yamada, A., Ohmi, M., Ohnishi, M., Kuwabara, M., Haruna, M.: Maximum-intensity-projection imaging for dynamic analysis of mental sweating by optical coherence tomography. Appl. Phys. Exp. 1, 098001 (2008)

    Article  Google Scholar 

  61. Zackrisson, T., Eriksson, B., Hosseini, N., Johnels, B., Krogstad, A.-L.: Patients with hyperhidrosis have changed grip force, coefficient of friction and safety margin. Acta Neurol. Scand. 117, 279–284 (2008)

    Article  CAS  Google Scholar 

  62. Smith, A.M., Cadoret, G., St-Amour, D.: Scopolamine increases prehensile force during object manipulation by reducing palmar sweating and decreasing skin friction. Exp. Brain Res. 114, 578–583 (1997)

    Article  CAS  Google Scholar 

  63. Kumar, A., Bismil, Q., Morgan, B., Ashbrooke, A., Davies, S., Solan, M.: The “biro test” for autonomic dysfunction in carpal tunnel syndrome. J. Hand Surg. 33E, 355–357 (2008)

    Google Scholar 

  64. Skedung, L., Danerlöv, K., Olofsson, U., Aikala, M., Niemi, K., Kettle, J., Rutland, M.W.: Finger friction measurements on coated and uncoated printing papers. Tribol. Lett. 37, 389–399 (2010)

    Article  CAS  Google Scholar 

  65. Tomlinson, S.E., Lewis, R., Carré, M.J.: The effect of normal force and roughness on friction in human finger contact. Wear 267, 1311–1318 (2009)

    Article  CAS  Google Scholar 

  66. Adams, M.J., Briscoe, B.J., Pope, L.: A contact mechanics approach to the prediction of the wall friction of powders. In: Briscoe, B.J., Adams, M.J. (eds.) Tribology in Particulate Technology, pp. 8–22. Adam Hilger, Bristol (1987)

    Google Scholar 

  67. Skedung, L., Danerlöv, K., Olofsson, U., Johannesson, C.M., Aikala, M., Kettle, J., Arvidsson, M., Berglund, B., Rutland, M.W.: Tactile perception: finger friction, surface roughness and perceived coarseness. Tribol. Int. 44, 505–512 (2011)

    Article  Google Scholar 

  68. Day, J.S., Edwards, H.G.M., Dobrowski, S.A., Voice, A.M.: The detection of drugs of abuse in fingerprints using Raman spectroscopy I: latent fingerprints. Spectrochim. Acta A 60, 563–568 (2004)

    Article  Google Scholar 

  69. Williams, D.K., Schwartz, R.L., Bartick, E.G.: Analysis of latent fingerprint deposits by infrared microspectroscopy. Appl. Spectrosc. 58, 313–316 (2004)

    Article  CAS  Google Scholar 

  70. Knowles, A.M.: Aspects of physicochemical methods for the detection of latent fingerprints. J. Phys. E Sci. Instrum. 11, 713–721 (1978)

    Article  CAS  Google Scholar 

  71. Persson, B.N.J.: Wet adhesion with application to tree frog adhesive toe pads and tires. J. Phys. Condens. Matter 19, 376110 (2007)

    Article  Google Scholar 

  72. Bongaerts, J.H.H., Fourtouni, K., Stokes, J.R.: Soft-tribology: lubrication in a compliant PDMS–PDMS contact. Tribol. Int. 40, 1531–1542 (2007)

    Article  CAS  Google Scholar 

  73. Persson, B.N.J., Scaraggi, M.: On the transition from boundary lubrication to hydrodynamic lubrication in soft contacts. J. Phys. Condens. Matter 21, 185002 (2009)

    Article  CAS  Google Scholar 

  74. Briscoe, B.J., Tabor, D.: Shear properties of thin polymeric films. J. Adhesion 9, 145–155 (1978)

    Article  CAS  Google Scholar 

  75. Ludema, K.C., Tabor, D.: The friction and visco-elastic properties of polymeric solids. Wear 9, 329–348 (1966)

    Article  CAS  Google Scholar 

  76. Vorvolakos, K., Chaudhury, M.K.: The effects of molecular weight and temperature on the kinetic friction of silicone rubbers. Langmuir 19, 6778–6787 (2003)

    Article  CAS  Google Scholar 

  77. Wu-Bavouzet, F., Clain-Burckbuchler, J., Buguin, A., De Gennes, P.-G., Brochard-Wyart, F.: Stick-slip: wet versus dry. J. Adhesion 83, 761–784 (2007)

    Article  CAS  Google Scholar 

  78. Bureau, L., Caroli, C., Baumberger, T.: Frictional dissipation and interfacial glass transition of polymeric solids. Phys. Rev. Lett. 97, 225501 (2006)

    Article  Google Scholar 

  79. Kurokawa, T., Tominaga, T., Katsuyama, Y., Kuwabara, R., Furukawa, H., Osada, Y., Gong, J.P.: Elastic-hydrodynamic transition of gel friction. Langmuir 21, 8643–8648 (2005)

    Article  CAS  Google Scholar 

  80. Momozono, S., Nakamura, K., Kyogoku, K.: Theoretical model for adhesive friction between elastomers and rough solid surfaces. J. Chem. Phys. 132, 114105 (2010)

    Article  Google Scholar 

  81. Schallamach, A.: A theory of dynamic friction. Wear 6, 375–382 (1963)

    Article  Google Scholar 

  82. Eyring, H.: Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936)

    Article  CAS  Google Scholar 

  83. Chernyak, Y.B., Leonov, A.I.: On the theory of the adhesive friction of elastomers. Wear 108, 105–138 (1986)

    Article  CAS  Google Scholar 

  84. Drummond, C., Israelachvili, J., Richetti, P.: Friction between two weakly adhering boundary lubricated surfaces in water. Phys. Rev. E 67, 066110 (2003)

    Article  CAS  Google Scholar 

  85. Grosch, K.A.: The relation between the friction and visco-elastic properties of rubber. Proc. R. Soc. Lond. A 274, 21–39 (1963)

    Article  CAS  Google Scholar 

  86. Persson, B.N.J.: Capillary adhesion between elastic solids with randomly rough surfaces. J. Phys. Condens. Matter 20, 315007 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This research was undertaken within the FP6-NMP NANOBIOTACT project (contract no. 033287) and the FP7-NMP NANOBIOTOUCH project (contract no. 228844). The authors are grateful for the financial support provided by the EC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Adams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasumarty, S.M., Johnson, S.A., Watson, S.A. et al. Friction of the Human Finger Pad: Influence of Moisture, Occlusion and Velocity. Tribol Lett 44, 117 (2011). https://doi.org/10.1007/s11249-011-9828-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-011-9828-0

Keywords

Navigation