Skip to main content
Log in

Understanding the Friction Mechanisms Between the Human Finger and Flat Contacting Surfaces in Moist Conditions

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Human hands sweat in different circumstances and the presence of sweat can alter the friction between the hand and contacting surface. It is, therefore, important to understand how hand moisture varies between people, during different activities and the effect of this on friction. In this study, a survey of fingertip moisture was done. Friction tests were then carried out to investigate the effect of moisture. Moisture was added to the surface of the finger, the finger was soaked in water, and water was added to the counter-surface; the friction of the contact was then measured. It was found that the friction increased, up until a certain level of moisture and then decreased. The increase in friction has previously been explained by viscous shearing, water absorption and capillary adhesion. The results from the experiments enabled the mechanisms to be investigated analytically. This study found that water absorption is the principle mechanism responsible for the increase in friction, followed by capillary adhesion, although it was not conclusively proved that this contributes significantly. Both these mechanisms increase friction by increasing the area of contact and therefore adhesion. Viscous shearing in the liquid bridges has negligible effect. There are, however, many limitations in the modelling that need further exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tomlinson, S.E., Lewis, R., Carré, M.J.: The effect of normal force and roughness on friction in human finger contact. Wear 267, 1311–1318 (2009)

    Article  CAS  Google Scholar 

  2. Ramalho, A., Silva, C.L., Pais, A.A.C.C., Sousa, J.J.S.: In vivo friction study of human skin: influence of moisturizers on different anatomical sites. Wear 263, 1044–1049 (2007)

    Article  CAS  Google Scholar 

  3. Derler, S., Gerhardt, L.-C., Lenz, A., Bertaux, E., Hadad, M.: Friction of human skin against smooth and rough glass as a function of the contact pressure. Tribol. Int. 42, 1565–1574 (2009)

    Article  Google Scholar 

  4. Sivamani, R.K., Goodman, J., Gitis, N.V., Maibach, H.I.: Coefficient of friction: tribological studies in man—an overview. Skin Res. Technol. 9, 227–234 (2003)

    Article  Google Scholar 

  5. Tomlinson, S., Lewis, R., Carré, M.J.: Review of the frictional properties of the finger-object contact when gripping. Proc. IMechE J. Eng. Tribol. 221, 841–850 (2007)

    Article  Google Scholar 

  6. Mackenzie, C.L., Iberall, T.: The grasping hand. Skin: an organ critical for grasp. Adv. Physiol. 104, 205–218 (1994)

    Google Scholar 

  7. André, T., De Wan, M., Lefevre, P., Thonnard, J.-L.: Moisture evaluator: a direct measure of fingertip skin hydration during object manipulation. Skin Res. Technol. 14, 385–389 (2008)

    Article  Google Scholar 

  8. André, T., Lefevre, P., Thonnard, J.-L.: A continuous measure of fingertip friction during precision grip. J. Neurosci. Methods 179, 224–229 (2009)

    Article  Google Scholar 

  9. Nonomura, Y., Fujii, T., Arashi, Y., Miura, T., Maeno, T., Tashiro, K., Kamikawa, Y., Monchi, R.: Tactile impression and friction of water on human skin. Colloids Surf. B: Biointerfaces 69, 264–267 (2009)

    Article  CAS  Google Scholar 

  10. Hendriks, C.P., Franklin, S.E.: Influence of surface roughness, material and climate conditions on the friction of human skin. Tribol. Lett. 37, 361–373 (2010)

    Article  CAS  Google Scholar 

  11. Kwiatkowska, M., Franklin, S.E., Hendriks, C.P., Kwiatkowski, K.: Friction and deformation behaviour of human skin. Wear 267, 1264–1273 (2009)

    Article  CAS  Google Scholar 

  12. Gerhardt, L.-C., Strassle, V., Lenz, A., Spencer, N.D., Derler, S.: Influence of epidermal hydration on the friction of human skin against textiles. J. R. Soc. Interface 5, 1317–1328 (2008)

    Article  Google Scholar 

  13. Dinç, O.S., Ettles, C.M., Calabrese, S.J., Scarton, H.A.: Some parameters affecting tactile friction. J. Tribol. 113, 512–517 (1991)

    Article  Google Scholar 

  14. Adams, M.J., Briscoe, B.J., Johnson, S.A.: Friction and lubrication of human skin. Tribol. Lett. 26, 239–253 (2007)

    Article  CAS  Google Scholar 

  15. Persson, B.N.J.: Capillary adhesion between elastic solids with randomly rough surfaces. J. Phys. Condens. Matter 20, 1–11 (2008)

    Google Scholar 

  16. Deleau, F., Mazuyer, D., Koenen, A.: Sliding friction at elastomer/glass contact: Influence of the wetting conditions and instability analysis. Tribol. Int. 42, 149–159 (2009)

    Article  CAS  Google Scholar 

  17. http://www.moritexusa.com/products/product.php?plid=5&pcid=10&pid=17. Accessed 1/12/09

  18. Tomlinson, S.E., Lewis, R., Carre, M.J.: Understanding the effect of finger-ball friction on the handling performance of rugby balls. Sports Eng. 11, 109–118 (2009)

    Article  Google Scholar 

  19. Adelman, S., Taylor, C.R., Heglund, N.C.: Sweating on paws and palms: what is its function? Am. J. Physiol. 229, 1400–1402 (1975)

    CAS  Google Scholar 

  20. Gajewski, A.: Contact angle and sessile drop diameter hysteresis on metal surfaces. Int. J. Heat Mass Transf. 51, 4628–4636 (2008)

    Article  CAS  Google Scholar 

  21. Eroschenko, V.P., diFio, M.S.H.: DiFiore’s Atlas of Histology with Functional Correlations. Williams and Wilkins, Lippincott (2007)

    Google Scholar 

  22. Rosen, M.R.: Delivery System Handbook for Personal Care and Cosmetic Products—Technology, Applications and Formulations. William Andrew Publishing, Norwich, NY (2005)

    Google Scholar 

  23. Lévêque, J.-L.: Water-keratin interactions. In: Fluhr, J., Berardesca, E., Elsner, P., Maibach, H.I. (eds.) Bioengineering of the Skin: Water and the Stratum Corneum. CRC Press, Boca Raton, FL (2004)

    Google Scholar 

  24. Soneda, T., Nakano, K.: Investigation of vibrotactile sensation of human fingerpads by observation of contact zones. Tribol. Int. 43, 210–217 (2010)

    Article  Google Scholar 

  25. Pailler-Mattei, C., Nicoli, S., Pirot, F., Vargiolu, R., Zahouani, H.: A new approach to describe skin surface physical properties in vivo. Colloids Surf. B: Biointerfaces 68, 200–206 (2009)

    Article  CAS  Google Scholar 

  26. deVicente, J., Stokes, J.R., Spikes, H.A.: Rolling and sliding friction in compliant, lubricated contact. Proc. Inst. Mech. Eng. J. 220, 55–63 (2006)

    Article  Google Scholar 

  27. Bongaerts, J.H.H., Fourtouni, K., Stokes, J.R.: Soft-tribology: Lubrication in a compliant PDMS-PDMS contact. Tribol. Int. 40, 1531–1542 (2007)

    Article  CAS  Google Scholar 

  28. deVicente, J., Stokes, J.R., Spikes, H.A.: Behaviour of complex fluids between highly deformable surfaces: isoviscous elastohydrodynamic lubrication. Marie Curie Fellowship Association Annals, vol. IV (2005)

  29. Johnson, S.A., Adams M.J., Arvanitaki, A., Briscoe, B.J.: Film thickness measurements in elastohydrodynamically-lubricated elastomeric contacts. Proceedings of the 23rd Leeds/Lyon Symposium on Tribology, pp. 199–207 (1997)

  30. Agache, P.G., Monneur, C., Leveque, J.L., Rigal, J.D.: Mechanical properties and Young’s modulus of human skin in vivo. Dermatol. Res. 269, 221–232 (1980)

    Article  CAS  Google Scholar 

  31. Incropera, F.P., De Witt, D.P.: Introduction to Heat Transfer, 2nd edn. John Wiley & sons, New York (1990)

    Google Scholar 

  32. Hamrock, B.J.: Fundamentals of Fluid Film Lubrication. New York (1994)

  33. Tomlinson, S.T.: Understanding the friction between human fingers and contacting surfaces. PhD Thesis, The University of Sheffield, Department of Mechanical Engineering (2009)

  34. Childs, T.H.C., Henson, B.: Human tactile perception of screen-printed surfaces: self-report and contact mechanics experiments. Proc. IMechE J: Eng Tribol. 217, 427–441 (2007)

    Article  Google Scholar 

  35. DelRio, F.W., Dunn, M.L., deBoer, M.P.: Capillary adhesion model for contacting micromachined surfaces. Scripta Mater. 59, 916–920 (2008)

    Article  CAS  Google Scholar 

  36. Park, A.C., Baddiel, C.B.: Rheology of stratum corneum-I: a molecular interpretaion of the stress-strain curve. J. Cosmet. Sci. 23, 3–12 (1972)

    Google Scholar 

  37. Park, A.C., Baddiel, C.B.: The effect of saturated salt solutions on the elastic properties of stratum corneum. J. Cosmet. Sci. 23, 471–479 (1972)

    CAS  Google Scholar 

  38. Dwyer-Joyce, R.S., Drinkwater, B.W., Donohoe, C.J.: The measurement of lubricant-film thickness using ultrasound. Proc. R. Soc. Lond. A 459, 957–976 (2003)

    Article  CAS  Google Scholar 

  39. Ohlidal, I., Franta, D.: Ellipsometry of thin film systems. In: Wolf, E. (ed.) Progress in Optics, 41st edn, pp. 181–282. Elsevier, Amsterdam (2000)

    Google Scholar 

Download references

Acknowledgments

We would like to thank B. Persson, Jülich Forschungszentrum for his advice about capillary adhesion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Lewis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomlinson, S.E., Lewis, R., Liu, X. et al. Understanding the Friction Mechanisms Between the Human Finger and Flat Contacting Surfaces in Moist Conditions. Tribol Lett 41, 283–294 (2011). https://doi.org/10.1007/s11249-010-9709-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-010-9709-y

Keywords

Navigation