Skip to main content
Log in

Rippling on Wear Scar Surfaces of Nanocrystalline Diamond Films After Reciprocating Sliding Against Ceramic Balls

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The formation of nanoscopic ripple patterns on top of material surfaces has been reported for different materials and processes, such as sliding against polymers, high-force scanning in atomic force microscopy (AFM), and surface treatment by ion beam sputtering. In this work, we show that such periodic ripples can also be obtained in prolonged reciprocating sliding against nanocrystalline diamond (NCD) films. NCD films with a thickness of 0.8 µm were grown on top of silicon wafer substrates by hot-filament chemical vapor deposition using a mixture of methane and hydrogen. The chemical structure, surface morphology, and surface wear were characterized by Raman spectroscopy, scanning electron microscopy (SEM), and AFM. The tribological properties of the NCD films were evaluated by reciprocating sliding tests against Al2O3, Si3N4, and ZrO2 counter balls. Independent of the counter body material, clear ripple patterns with typical heights of about 30 nm induced during the sliding test are observed by means of AFM and SEM on the NCD wear scar surfaces. Although the underlying mechanisms of ripple formation are not yet fully understood, these surface corrugations could be attributed to the different wear phenomena, including a stress-induced micro-fracture and plastic deformation, a surface smoothening, and a surface rehybridization from diamond bonding to an sp 2 configuration. The similarity between ripples observed in the present study and ripples reported after repeated AFM tip scanning indicates that ripple formation is a rather universal phenomenon occurring in moving tribological contacts of different materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Haubner, R., Kalss, W.: Diamond deposition on hardmetal substrates—comparison of substrate pre-treatments and industrial applications. Int. J. Refract. Met. Hard Mater. 28, 475–483 (2010)

    Article  Google Scholar 

  2. Auciello, O., Birrell, J., Carlisle, J.A., Gerbi, J.E., Xiao, X., Peng, B., Espinosa, H.D.: Materials science and fabrication processes for a new MEMS technology based on ultrananocrystalline diamond thin films. J. Phys. Condens. Matter 16, R539–R552 (2004)

    Article  Google Scholar 

  3. Hantschel, T., Niedermann, P., Trenkler, T., Vandervorst, W.: Highly conductive diamond probes for scanning spreading resistance microscopy. Appl. Phys. Lett. 76(12), 1603–1605 (2000)

    Article  Google Scholar 

  4. Butler, J.E., Sumant, A.V.: The CVD of nanodiamond materials. Chem. Vap. Depos. 14, 145–160 (2008)

    Article  Google Scholar 

  5. Pastewka, L., Moser, S., Gumbsch, P., Moseler, M.: Anisotropic mechanical amorphization drives wear in diamond. Nat. Mater. 10, 34–38 (2011)

    Article  Google Scholar 

  6. Bhushan, B., Subramaniam, V.V., Malshe, A., Gupta, B.K., Ruan, J.: Tribological properties of polished diamond films. J. Appl. Phys. 74(6), 4174–4180 (1993)

    Article  Google Scholar 

  7. Erdemir, A., Halter, M., Fenske, G.R., Zuiker, C., Csencsits, R., Krauss, A.R., Gruen, D.M.: Friction and wear mechanisms of smooth diamond films during sliding in air and dry nitrogen. Tribol. Trans. 40, 667–675 (1997)

    Article  Google Scholar 

  8. Erdemir, A., Fenske, G.R., Krauss, A.R., Gruen, D.M., McCauley, T., Csencsits, R.T.: Tribological properties of nanocrystalline diamond films. Surf. Coat. Technol. 120–121, 565–572 (1999)

    Article  Google Scholar 

  9. Chromik, R.R., Winfrey, A.L., Lüning, J., Nemanich, R.J., Wahl, K.J.: Run-in behavior of nanocrystalline diamond coatings studied by in situ tribometry. Wear 265, 477–489 (2008)

    Article  Google Scholar 

  10. Kumar, N., Panda, K., Dash, S., Popov, C., Reithmaier, J.P., Panigrahi, B.K., Tyagi, A.K., Raj, B.: Tribological properties of nanocrystalline diamond films deposited by hot filament chemical vapor deposition. AIP Adv. 2, 032164-1–032164-14 (2012)

    Google Scholar 

  11. Holmberg, K., Ronkainen, H., Laukkanen, A., Wallin, K.: Friction and wear of coated surfaces—scales, modeling and simulation of tribomechanisms. Surf. Coat. Technol. 202, 1034–1049 (2007)

    Article  Google Scholar 

  12. Grillo, S.E., Field, J.E., van Bouwelen, F.M.: Diamond polishing: the dependency of friction and wear on load and crystal orientation. J. Phys. D Appl. Phys. 33, 985–990 (2000)

    Article  Google Scholar 

  13. El-Dasher, B.S., Gray, J.J., Tringe, J.W., Biener, J., Hamza, A.V.: Crystallographic anisotropy of wear on a polycrystalline diamond surface. Appl. Phys. Lett. 88, 241915-1–241915-3 (2006)

    Article  Google Scholar 

  14. Hird, J.R., Field, J.E.: Diamond polishing. Proc. R. Soc. Lond. A 460, 3547–3568 (2004)

    Article  Google Scholar 

  15. Van Bouwelen, F.M., Enckevort, W.J.P.: A simple model to explain the anisotropy of diamond polishing. Diam. Relat. Mater. 8, 840–844 (1999)

    Article  Google Scholar 

  16. Van Bouwelen, F.M., Field, J.E., Brown, L.M.: Electron microscopy analysis of debris produced during diamond polishing. Philos. Mag. 83, 839–856 (2003)

    Article  Google Scholar 

  17. Couto, M.S., van Enckvort, W.J.P., Seal, M.: On the mechanism of diamond polishing in the soft directions. J. Hard Mater. 5, 31–47 (1994)

    Google Scholar 

  18. Couto, M.S., van Enckevort, W.J.P., Seal, M.: Diamond polishing mechanisms: an investigation by scanning tunnelling microscopy. Philos. Mag. B 69, 621–641 (1994)

    Article  Google Scholar 

  19. Abreu, C.S., Amaral, M., Fernandes, A.J.S., Oliveira, F.J., Silva, R.F., Gomes, J.R.: Friction and wear performance of HFCVD nanocrystalline diamond coated silicon nitride ceramics. Diam. Relat. Mater. 15, 739–744 (2006)

    Article  Google Scholar 

  20. Casari, C.S., Li Bassi, A., Ravagnan, L., Siviero, F., Lenardi, C., Piseri, P., Bongiorno, G., Bottani, C.E., Milani, P.: Chemical and thermal stability of carbyne-like structures in cluster-assembled carbon films. Phys. Rev. B 69, 075422-1–075422-7 (2004)

    Article  Google Scholar 

  21. Gardos, M.N., Soriano, B.L.: The effect of environment on the tribological properties of polycrystalline diamond films. J. Mater. Res. 5, 2599–2609 (1990)

    Article  Google Scholar 

  22. Gardos, M.N., Gabelich, S.A.: Atmospheric effects of friction, friction noise and wear with silicon and diamond. Part III. SEM tribometry of polycrystalline diamond in vacuum and hydrogen. Tribol. Lett. 6, 103–112 (1999)

    Article  Google Scholar 

  23. Konicek, A.R., Grierson, D.S., Sumant, A.V., Friedmann, T.A., Sullivan, J.P., Gilbert, P.U.P.A., Sawyer, W.G., Carpick, R.W.: Influence of surface passivation on the friction and wear behavior of ultrananocrystalline diamond and tetrahedral amorphous carbon thin films. Phys. Rev. B 85, 155448-1–155448-13 (2012)

    Article  Google Scholar 

  24. Shi, W., Dong, H., Bell, T.: Tribological behaviour and microscopic wear mechanisms of UHMWPE sliding against thermal oxidation-treated Ti6Al4V. Mater. Sci. Eng. A 291, 27–36 (2000)

    Article  Google Scholar 

  25. Leung, O.M., Goh, M.C.: Orientational ordering of polymers by atomic force microscope tip-surface interaction. Science 255, 64–66 (1992)

    Article  Google Scholar 

  26. Socoliuc, A., Gnecco, E., Bennewitz, R., Meyer, E.: Ripple formation induced in localized abrasion. Phys. Rev. B 68, 115416-1–115416-4 (2003)

    Article  Google Scholar 

  27. Such, B., Krok, F., Szymonski, M.: AFM tip-induced ripple pattern on AIII-BV semiconductor surfaces. Appl. Surf. Sci. 254, 5431–5434 (2008)

    Article  Google Scholar 

  28. Filippov, A.E., Popov, V.L., Urbakh, M.: Mechanism of wear and ripple formation induced by mechanical action of an atomic force microscope tip. Phys. Rev. Lett. 106, 025502-1–025502-4 (2011)

    Article  Google Scholar 

  29. Datta, D., Bhattacharyya, S.R., Chini, T.K., Sanyal, M.K.: Evolution of surface morphology of ion sputtered GaAs(100). Nucl. Instr. Methods Phys. Res. B 193, 596–602 (2002)

    Article  Google Scholar 

  30. Cuerno, R., Castro, M., Muńoz-Garcķa, J., Gago, R., Vázquez, L.: Nanoscale pattern formation at surfaces under ion-beam sputtering: a perspective from continuum models. Nucl. Instr. Methods Phys. Res. B 269, 894–900 (2011)

    Article  Google Scholar 

  31. Datta, A., Wu, Y.-R., Wang, Y.L.: Real-time observation of ripple structure formation on a diamond surface under focused ion-beam bombardment. Phys. Rev. B 63, 125407-1–125407-6 (2001)

    Article  Google Scholar 

  32. Adams, D.P., Vasile, M.J., Mayer, T.M., Hodges, V.C.: Focused ion beam milling of diamond: effects of H2O on yield, surface morphology and microstructure. J. Vac. Sci. Technol. B 21(6), 2334–2343 (2003)

    Article  Google Scholar 

  33. Brookes, E.J., Greenwood, P., Xing, G.: Friction and wear of synthetic diamond. Int. J. Refract. Metal Hard Mater. 17, 69–77 (1999)

    Article  Google Scholar 

  34. Vandenbulcke, L., De Barros, M.I.: Deposition, structure, mechanical properties and tribological behavior of polycrystalline to smooth fine-grained diamond coatings. Surf. Coat. Technol. 146–147, 417–424 (2001)

    Article  Google Scholar 

  35. Castro, M., Cuerno, R., Nicoli, M., Vázquez, L., Buijnsters, J.G.: Universality of cauliflower-like fronts: from nanoscale thin films to macroscopic plants. N. J. Phys. 14, 103039-1–103039-15 (2012)

    Article  Google Scholar 

  36. Buijnsters, J.G., Vázquez, L.: Growth dynamics of nanocrystalline diamond thin films deposited by hot filament chemical vapor deposition: influence of low sticking and renucleation processes. J. Phys. Chem. C 115, 9681–9691 (2011)

    Article  Google Scholar 

  37. May, P.W., Ludlow, W.J., Hannaway, M., Heard, P.J., Smith, J.A., Rosser, K.N.: Raman and conductivity studies of boron-doped microcrystalline diamond, facetted nanocrystalline diamond and cauliflower diamond films. Diam. Relat. Mater. 17, 105–117 (2008)

    Article  Google Scholar 

  38. Ferrari, A.C., Robertson, J.: Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. Lond. A 362, 2477–2512 (2004)

    Article  Google Scholar 

  39. Ferrari, A.C.: Robertson J Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 64, 075414-1–075414-13 (2001)

    Article  Google Scholar 

  40. Bowden, F.P., Freitag, E.H.: The friction of solids at very high speeds. Proc. R. Soc. Lond. A 248, 350–367 (1958)

    Article  Google Scholar 

  41. Rigney, D.A., Karthikeyan, S.: The evolution of tribomaterial during sliding: a brief introduction. Tribol. Lett. 39, 3–7 (2010)

    Article  Google Scholar 

  42. Heslot, F., Baumberger, T., Perrin, B.: Creep, stick-slip, and dry-friction dynamics: experiments and a heuristic model. Phys. Rev. E 49, 4973–4988 (1994)

    Article  Google Scholar 

  43. Mohrbacher, H., Celis, J.-P., Roos, J.R.: Laboratory testing of displacement and load induced fretting. Tribol. Int. 28(5), 269–278 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the Estonian Science Foundation Grant Number 8696. J.G.B. would like to thank the Executive Research Agency of the European Union for funding under the Marie Curie IEF Grant Number 272448.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Podgursky.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 190 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podgursky, V., Hantschel, T., Bogatov, A. et al. Rippling on Wear Scar Surfaces of Nanocrystalline Diamond Films After Reciprocating Sliding Against Ceramic Balls. Tribol Lett 55, 493–501 (2014). https://doi.org/10.1007/s11249-014-0379-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-014-0379-z

Keywords

Navigation