Skip to main content

Advertisement

Log in

Mechanical and Tribological Behavior of Microcrystalline CVD Diamond Coatings

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

Smooth and adhesive microcrystalline CVD diamond coatings have been acquired successfully on chemically etched titanium alloy (Ti6Al4V) substrates, using hot filament chemical vapor deposition technique. The mechanical and tribological characteristics of HFCVD microcrystalline diamond coatings on titanium alloy (Ti6Al4V) substrates are investigated in this research. SEM and Raman spectroscopy were used to study the morphology and quality of the coatings. The surface roughness has been determined by 3d profilometer measurements. A ball-on-disk tribometer was used to characterize the friction and wear of the coatings. The frictional behavior of the MCD coating was studied, when sliding against smooth alumina ball with increasing load (1–10 N). A coefficient of friction of ~ 0.3–0.287 was obtained at a sliding speed of 12 m/s. The wear of the diamond coating is negligible. The alumina balls are worn out quickly as compared to the diamond coatings. Nanoindentation tests were carried out using Berkovich nanoindenter, and the average super-hardness of MCD coatings was found to be 55 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amaral M, Maru MM, Rodrigues SP, Gouvêa CP, Trommer RM, Oliveira FJ, Achete CA, Silva RF (2015) Extremely low wear rates in hip joint bearings coated with nanocrystalline diamond. Tribol Int 89:72–77

    Article  Google Scholar 

  2. Salar Elahi A, Ghoranneviss M (2015) Application of the HFCVD technique for growth of nano-rods and nano-crystals. J Cryst Growth 410:82–92

    Article  Google Scholar 

  3. Spitsyn BV, Bouilov LL, Derjaguin BV (1981) Vapor growth of diamond on diamond and other surfaces. J Cryst Growth 52:219–226

    Article  Google Scholar 

  4. Angus JC, Argoitia A, Gat R, Li Z, Sunkara M, Wang L, Wang Y (1993) Chemical vapour deposition of diamond. Philos Trans R Soc Lond Ser A Phys Eng Sci 342:195–208

    Article  Google Scholar 

  5. DeVries RC (1987) Synthesis of diamond under metastable conditions. Annu Rev Mater Sci 17:161–187

    Article  Google Scholar 

  6. Jones AC, Hitchman ML (2009) Chemical vapor deposition, precursors, processes and applications. RCS Publications

  7. TaoZhang XL, Sun F, Zhang Z (2015) The deposition parameters in the synthesis of CVD microcrystalline diamond powders optimized by the orthogonal experiment. J Cryst Growth 426:15–24

    Article  Google Scholar 

  8. Zhang CZ, Niakan H, Yang L, Li YS, Hu YF, Yang Q (2013) Study of diamond nucleation and growth on Ti6Al4V with tungsten interlayer. Surf Coat Technol 237:248–254

    Article  Google Scholar 

  9. Miyoshi K (1996) Friction and wear properties of as-deposited and carbon ion-implanted diamond films. Mater Sci Eng A 209:38–53

    Article  Google Scholar 

  10. Wang J, Zhoub J, Long HY, Xie YN, Zhang XW, Luo H, Deng ZJ, Wei Q, Yu ZM, Zhang J, Tang ZG (2014) Tribological, anti-corrosive properties and biocompatibility of the micro-and nano-crystalline diamond coated Ti6Al4V. Surf Coat Technol 258:1032–1038

    Article  Google Scholar 

  11. Schafer L, Hofer M, Kroger R (2006) The versatility of hot-filament activated chemical vapor deposition. Thin Solid Films 515:1017–1024

    Article  Google Scholar 

  12. Liu MN, Bian YB, Zheng SJ, Zhua T, Chena YG, Chenb YL, Wang JS (2015) Growth and mechanical properties of diamond films on cemented carbide with buffer layers. Thin Solid Films 584:165–169

    Article  Google Scholar 

  13. May PW, Smith JA, Mankelevich Y (2006) Deposition of NCD films using hot filament CVD and Ar/CH4/H2 gas mixtures. Diam Relat Mater 15:345–352

    Article  Google Scholar 

  14. Tsai H-Y, Tseng P-T (2015) Field emission characteristics of diamond nano-tip array fabricated by anodic aluminum oxide template with nano-conical holes. Appl Surf Sci 351:1004–1010

    Article  Google Scholar 

  15. Chen N, Pua L, Sunb F, He P, Zhua Q, Ren J (2015) Tribological behavior of HFCVD multilayer diamond film on silicon carbide. Surf Coat Technol 272:66–71

    Article  Google Scholar 

  16. Long H, Lia S, Luo H, Wang Y, Wei P, Yu ZM (2015) The effect of periodic magnetic field on the fabrication and field emission properties of nanocrystalline diamond films. Appl Surf Sci 353:548–552

    Article  Google Scholar 

  17. Sarangi SK, Chattopadhyay A, Chattopadhyay AK (2012) Influence of process parameters on growth of diamond crystal on cemented carbide substrates by HFCVD system. Int J Refract Met Hard Mater 31:1–13

    Article  Google Scholar 

  18. Liang Q, Stanishevsky A, Vohra YK (2008) Tribological properties of undoped and boron-doped nanocrystalline diamond films. Thin Solid Films 517:800–804

    Article  Google Scholar 

  19. Ali M, Urgen M (2011) Surface morphology, growth rate and quality of diamond films synthesized in hot filament CVD system under various methane concentrations. Appl Surf Sci 257:8420–8426

    Article  Google Scholar 

  20. Trava-Airoldi VJ, Corat EJ, Peiia AFV, Leite NF, Baranauskas V, Salvadori MC (1995) Columnar CVD diamond growth structure on irregular surface substrates. Diam Relat Mater 4:1255–1259

    Article  Google Scholar 

  21. Jeon ID, Park CJ, Kim DY, Hwang NM (2001) Effect of methane concentration on size of charged clusters in the hot filament diamond CVD process. J Cryst Growth 223:6–14

    Article  Google Scholar 

  22. Williams OA, Daenen M, D’Haen J, Haenen K, Maes J, Moshchalkov VV, Nesládek M, Gruen DM (2006) Comparison of the growth and properties of ultrananocrystalline diamond and nanocrystalline diamond. Diam Relat Mater 15:654–658

    Article  Google Scholar 

  23. Buijnsters JG, Vázquez L, ter Meulen JJ (2009) Substrate pre-treatment by ultrasonication with diamond powder mixtures for nucleation enhancement in diamond film growth. Diam Relat Mater 18:1239–1246

    Article  Google Scholar 

  24. Sumant AV, Grierson DS, Gerbi JE, Carlisle JA, Auciello O, Carpick RW (2007) Surface chemistry and bonding configuration of ultrananocrystalline diamond surfaces and their effects on nanotribological properties. Phys Rev B 76:235429

    Article  Google Scholar 

  25. Amaral M, Silva DJ, Fernandes AJS, Costa FM, Oliveira FJ, Silva RF (2009) Surface activation pre-treatments for NCD films grown by HFCVD. Vacuum 83:1228–1232

    Article  Google Scholar 

  26. Miyoshi K, Wu RLC (2001) Measurements and diagnostics of diamond films and coatings. Measurement 29:113–126

    Article  Google Scholar 

  27. Knight DS, White WB (1989) Characterization of diamond films by Raman spectroscopy. J Mater Res 4:385–393

    Article  Google Scholar 

  28. Gruen DM (1999) Nanocrystalline diamond films. Annu Rev Mater Sci 29:211–259

    Article  Google Scholar 

  29. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Article  Google Scholar 

  30. Wiora M, Brühne K, Flöter A, Gluche P, Willey TM, Kucheyev SO, Van Buuren AW, Hamza AV, Biener J, Fecht HJ (2009) Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD. Diam Relat Mater 18:927–930

    Article  Google Scholar 

  31. Michler J, Mermoux M, von Kaenel Y, Haouni A, Lucazeau G, Blank E (1999) Residual stress in diamond films: origins and modelling. Thin Solid Films 357:189–201

    Article  Google Scholar 

  32. Chowdhury S, De Barra E, Laugier T (2004) Study of mechanical properties of CVD diamond on SiC substrates. Diam Relat Mater 13:1625–1631

    Article  Google Scholar 

  33. Catledge SA, Borham J, Vohra YK, Lacefield WR, Lemons JE (2002) Nanoindentation hardness and adhesion investigations of vapor deposited nanostructured diamond films. J Appl Phys 91:5347–5352

    Article  Google Scholar 

  34. Narayan RJ, Wei W, Jin C, Andara M, Agarwal A, Gerhardt RA, Shih CC, Shih CM, Lin SJ, Su YY, Ramamurti R, Singh RN (2006) Microstructural and biological properties of nanocrystalline diamond coatings. Diam Relat Mater 15:1935–1940

    Article  Google Scholar 

  35. Kulisch W, Popov C, Boycheva S, Buforn L, Favaro G, Conte N (2004) Mechanical properties of nanocrystalline diamond/amorphous carbon composite films prepared by microwave plasma chemical vapour deposition. Diam Relat Mater 13:1997–2002

    Article  Google Scholar 

  36. Achanta S, Liskiewicz T, Drees D, Celis JP (2009) Friction mechanisms at the micro-scale. Tribol Int 42:1792–1799

    Article  Google Scholar 

  37. Panda K, Kumar N, Panigrahi B, Polaki S, Sundaravel B, Dash S, Tyagi A, Lin I-N (2013) Tribological properties of N+ ion implanted ultrananocrystalline diamond films. Tribol Int 57:124–136

    Article  Google Scholar 

  38. Kulesza S, Patyk J, Rozpłoch F (2004) Spontaneous decrease of high surface electrical conductivity in diamond exposed to atmospheric air. Chem Phys Lett 391:56–59

    Article  Google Scholar 

  39. Erdemir A, Bindal C, Fenske G, Zuiker C, Krauss A, Gruen D (1996) Friction and wear properties of smooth diamond films grown in fullerene+ argon plasmas. Diam Relat Mater 5:923–931

    Article  Google Scholar 

  40. Pepper SV (1982) Effect of electronic structure of the diamond surface on the strength of the diamond–metal interface. J Vac Sci Technol 20:643–646

    Article  Google Scholar 

  41. Hollman P, Wänstrand O, Hogmark S (1998) Friction properties of smooth nanocrystalline diamond coatings. Diam Relat Mater 7:1471–1477

    Article  Google Scholar 

  42. Pastewka L, Moser S, Gumbsch P, Moseler M (2011) Anisotropic mechanical amorphization drives wear in diamond. Nat Mater 10:34–38

    Article  Google Scholar 

  43. Grierson DS, Carpick RW (2007) Nanotribology of carbon-based materials. Nano Today 2:12–21

    Article  Google Scholar 

  44. Kumar N, Panda K, Dash S, Popov C, Reithmaier J, Panigrahi B, Tyagi A, Raj B (2012) Tribological properties of nanocrystalline diamond films deposited by hot filament chemical vapor deposition. AIP Adv 2:032164

    Article  Google Scholar 

  45. Wiora M, Brühne K, Flöter A, Gluche P, Willey T, Kucheyev S, Van Buuren A, Hamza A, Biener J, Fecht H-J (2009) Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD. Diam Relat Mater 18:927–930

    Article  Google Scholar 

  46. Bull SJ, Mathews A (1992) Diamond for wear and corrosion applications. Diam Relat Mater 1:1049–1064

    Article  Google Scholar 

  47. Muratov VA, Luangvaranunt T, Fischer TE (1998) The tribochemistry of silicon nitride: effects of friction, temperature and sliding velocity. Tribol Int 31:601–611

    Article  Google Scholar 

  48. Bull SJ (1995) Tribology of carbon coatings: DLC, diamond and beyond. Diam Relat Mater 4:827–836

    Article  Google Scholar 

  49. Kato K (1992) Micro-mechanisms of wear–wear modes. Wear 153:277–295

    Article  Google Scholar 

  50. Blomberg A, Hogmark S, Lu J (1993) An electron microscopy study of worn ceramic surfaces. Tribol Int 26:369–381

    Article  Google Scholar 

  51. Fischer TE, Tomizawa E (1985) Interaction of tribochemistry and microfracture in the friction and wear of silicon nitride. Wear 105:29–45

    Article  Google Scholar 

  52. Fischer TE (1988) Tribochemistry. Annu Rev Mater Sci 18:303–323

    Article  Google Scholar 

  53. Bull SJ, Chalker PR, Johnston C, Moore V (1994) The effect of roughness on the friction and wear of diamond thin films. Surf Coat Technol 68–69:603–610

    Article  Google Scholar 

  54. Erdemir A, Halter M, Fenske GR, Zuiker C, Csencsits R, Krauss AR, Gruen DM (1997) Friction and wear mechanisms of smooth diamond films during sliding in air and dry nitrogen. Tribol Trans 40:667–675

    Article  Google Scholar 

  55. Kumar N, Radhika R, Kozakov AT, Sankaran KJ, Dash S, Tyagi AK, Tai NH, Lin N (2013) Humidity-dependent friction mechanism in an ultrananocrystalline diamond film. Appl Phys 46:275501

    Google Scholar 

  56. Chandrasekar S, Bhushan B (1992) The role of environment in the friction of diamond for magnetic recording head applications. Wear 153:79–89

    Article  Google Scholar 

  57. Miyoshi K, Wu RLC, Garscadden A, Barnes PN, Jackson HE (1993) Friction and wear of plasma‐deposited diamond films. J Appl Phys 74:4446–4454

    Article  Google Scholar 

  58. Erdemir A (2002) Friction and wear of diamond and diamond-like carbon films. J Eng Tribol 216:387–400

    Google Scholar 

  59. Miki H, Tsutsui A, Takeno T, Takagi T (2012) Friction properties of partially polished CVD diamond films at different sliding speeds. Diam Relat Mater 24:167–170

    Article  Google Scholar 

  60. Hayward IP, Singer IL, Seitzman LE (1992) Effect of roughness on the friction of diamond on CVD diamond coatings. Wear 157:215–227

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank MSRC lab, IIT Madras, for the deposition of coatings and C. Anandan (Surface Engineering Division, NAL, Bangalore, India) for carrying out tribological tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajad Hussain Din.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Din, S.H., Sheikh, N.A. & Butt, M.M. Mechanical and Tribological Behavior of Microcrystalline CVD Diamond Coatings. J Bio Tribo Corros 4, 27 (2018). https://doi.org/10.1007/s40735-018-0144-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-018-0144-1

Keywords

Navigation