Skip to main content

Advertisement

Log in

Voltammetric Quantification of D-penicillamine by Using a Carbon Paste Electrode Modified with WO3 Nanorods and Ionic Liquid as an Efficient Electrochemical Sensing Platform

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In this work, the electrochemical behavior and sensitive voltammetric determination of D-penicillamine are described by using a carbon paste electrode modified with WO3 nanorods and ionic liquid. The as-synthesized WO3 nanorods were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Cyclic voltammetric measurements showed that D-penicillamine was irreversibly oxidized at WO3 nanorods/ionic liquid/carbon paste electrode at 710 mV in pH 7.0 phosphate buffer solution. The peak current of D-penicillamine was increased approximately 6.2 fold at WO3 nanorods/ionic liquid/carbon paste electrode compared to unmodified carbon paste electrode due to a good electrocatalytic efficiency of WO3 nanorods and ionic liquid. A wide linear range response between oxidation peak current and D-penicillamine concentration (0.08–235.0 µM) was observed using differential pulse voltammetry. The limit of detection for D-penicillamine on WO3 nanorods/ionic liquid/carbon paste electrode is found to be 0.03 µM. Studies conducted in the analysis of D-penicillamine capsule and urine samples confirmed that the developed sensor exhibits good applicability for accurate and sensitive voltammetric determination of D-penicillamine in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Durán GM, Benavidez TE, Contento AM, Ríos A, García CD (2017) Analysis of penicillamine using Cu-modified graphene quantum dots synthesized from uric acid as single precursor. J Pharm Anal 7:324–331

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kean WF, Howard-Lock HE, Lock CJL (1991) Chirality in antirheumatic drugs. Lancet 338:1565–1568

    Article  CAS  PubMed  Google Scholar 

  3. Pawar SP, Gore AH, Walekar LS, Anbhule PV, Patil SR, Kolekar GB (2015) Turn-on fluorescence probe for selective and sensitive detection of d-penicillamine by CdS quantum dots in aqueous media: application to pharmaceutical formulation. Sens Actuators B: Chem 209:911–918

    Article  CAS  Google Scholar 

  4. Crawhall JC, Thompson CJ (1965) Cystinuria: effect of D-penicillamine on plasma and urinary cystine concentrations. Science 147:1459–1460

    Article  CAS  PubMed  Google Scholar 

  5. Saetre R, Rabenstein DL (1978) Determination of penicillamine in blood and urine by high performance liquid chromatography. Anal Chem 50:276–280

    Article  CAS  Google Scholar 

  6. Kumar V, Singh AP, Wheeler N, Galindo CL, Kim JJ (2021) Safety profile of D-penicillamine: a comprehensive pharmacovigilance analysis by FDA adverse event reporting system. Expert Opin Drug Saf 20:1443–1450

    Article  CAS  PubMed  Google Scholar 

  7. Kumar DR, Baynosa ML, Dhakal G, Shim JJ (2020) Sphere-like Ni3S4/NiS2/MoOx composite modified glassy carbon electrode for the electrocatalytic determination of d-penicillamine. J Mol Liq 301:112447

    Article  CAS  Google Scholar 

  8. Shahrajabian M, Ghasemi F, Hormozi-Nezhad MR (2018) Nanoparticle-based chemiluminescence for chiral discrimination of thiol-containing amino acids. Sci Rep 8:1–9

    Article  CAS  Google Scholar 

  9. Wang P, Li BL, Li NB, Luo HQ (2015) A fluorescence detection of d-penicillamine based on Cu2+-induced fluorescence quenching system of protein-stabilized gold nanoclusters. Spectrochim Acta A Mol Biomol Spectrosc 135:198–202

    Article  CAS  PubMed  Google Scholar 

  10. Yusof M, Neal R, Aykin N, Ercal N (2000) High performance liquid chromatography analysis of D-penicillamine by derivatization with N‐(1‐pyrenyl) maleimide (NPM). Biomed Chromatogr 14:535–540

    Article  CAS  PubMed  Google Scholar 

  11. Yang X, Yuan H, Wang C, Su X, Hu L, Xiao D (2007) Determination of penicillamine in pharmaceuticals and human plasma by capillary electrophoresis with in-column fiber optics light-emitting diode induced fluorescence detection. J Pharm Biomed Anal 45:362–366

    Article  CAS  PubMed  Google Scholar 

  12. Nazifi M, Ramezani AM, Absalan G, Ahmadi R (2021) Colorimetric determination of D-penicillamine based on the peroxidase mimetic activity of hierarchical hollow MoS2 nanotubes. Sens Actuators B Chem 332:129459

    Article  CAS  Google Scholar 

  13. Hou Y, Liang J, Kuang X, Kuang R (2022) Simultaneous electrochemical recognition of tryptophan and penicillamine enantiomers based on MOF-modified β-CD. Carbohydr Polym 290:119474

    Article  CAS  PubMed  Google Scholar 

  14. Ranjith Kumar D, Rajesh K, Sayed MS, Milton A, Shim JJ (2023) Development of polydiphenylamine@electrochemically reduced graphene oxide electrode for the D-Penicillamine sensor from human blood serum samples using amperometry. Polymers 15:577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jafari M, Tashkhourian J, Absalan G (2017) Electrochemical sensing of D-penicillamine on modified glassy carbon electrode by using a nanocomposite of gold nanoparticles and reduced graphene oxide. J Iran Chem Soc 14:1253–1262

    Article  CAS  Google Scholar 

  16. Peyman H, Roshanfekr H, Babakhanian A, Jafari H (2021) PVC membrane electrode modified by lawson as synthetic derivative ionophore for determination of cadmium in alloy and wastewater. Chem Methodol 5:446–453

    CAS  Google Scholar 

  17. Suhaimi NF, Baharin SNA, Jamion NA, Zain ZM, Sambasevam KP (2023) Polyaniline-chitosan modified on screen-printed carbon electrode for the electrochemical detection of perfluorooctanoic acid. Microchem J 188:108502

    Article  CAS  Google Scholar 

  18. Cheraghi S, Taher MA, Karimi-Maleh H, Karimi F, Shabani-Nooshabadi M, Alizadeh M, Al-Othman A, Erk N, Raman PKY, Karaman C (2022) Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biological body fluids. Chemosphere 287:132187

    Article  CAS  PubMed  Google Scholar 

  19. Zhao H, Guo M, Li F, Zhou Y, Zhu G, Liu Y, Dubovyk V (2023) Fabrication of gallic acid electrochemical sensor based on interconnected Super-P carbon black@mesoporous silica nanocomposite modified glassy carbon electrode. J Mater Res Technol 24:2100–2112

    Article  CAS  Google Scholar 

  20. Beitollahi H, Garkani-Nejad F, Dourandish Z, Tajik S (2022) A novel voltammetric amaranth sensor based on screen printed electrode modified with polypyrrole nanotubes. Environ Res 214:113725

    Article  CAS  PubMed  Google Scholar 

  21. Mohanraj J, Durgalakshmi D, Rakkesh RA, Balakumar S, Rajendran S, Karimi-Maleh H (2020) Facile synthesis of paper based graphene electrodes for point of care devices: a double stranded DNA (dsDNA) biosensor. J Colloid Interface Sci 566:463–472

    Article  CAS  PubMed  Google Scholar 

  22. Foroughi MM, Beitollahi H, Tajik S, Akbari A, Hosseinzadeh R (2014) Electrochemical determination of N-acetylcysteine and folic acid in pharmaceutical and biological samples using a modified carbon nanotube paste electrode. Int J Electrochem Sci 9:8407

    Article  Google Scholar 

  23. Arshadi M, Ghiaci M, Ensafi AA, Karimi-Maleh H, Suib SL (2011) Oxidation of ethylbenzene using some recyclable cobalt nanocatalysts: the role of linker and electrochemical study. J Mol Catal A Chem 338:71–83

    CAS  Google Scholar 

  24. Ensafi AA, Taei M, Khayamian T, Karimi-Maleh H, Hasanpour F (2010) Voltammetric measurement of trace amount of glutathione using multiwall carbon nanotubes as a sensor and chlorpromazine as a mediator. J Solid State Electrochem 14:1415–1423

    Article  CAS  Google Scholar 

  25. Beitollahi H, Raoof JB, Karimi-Maleh H, Hosseinzadeh R (2012) Electrochemical behavior of isoproterenol in the presence of uric acid and folic acid at a carbon paste electrode modified with 2,7-bis (ferrocenyl ethyl) fluoren-9-one and carbon nanotubes. J Solid State Electrochem 16:1701–1707

    Article  CAS  Google Scholar 

  26. Mehdizadeh Z, Shahidi S, Ghorbani-HasanSaraei A, Limooei M, Bijad M (2022) Monitoring of amaranth in drinking samples using voltammetric amplified electroanalytical sensor. Chem Methodol 6:246–252

    CAS  Google Scholar 

  27. Prasanna SB, Sakthivel R, Lin LY, Duann YF, He JH, Liu TY, Chung RJ (2023) MOF derived 2D-flake-like structured Mn3Co3O4 integrated acid functionalized MWCNT for electrochemical detection of antibiotic furazolidone in biological fluids. Appl Surf Sci 611:155784

    Article  Google Scholar 

  28. Buledi JA, Mahar N, Mallah A, Solangi AR, Palabiyik IM, Qambrani N, Karimi F, Vasseghian Y, Karimi-Maleh H (2022) Electrochemical quantification of mancozeb through tungsten oxide/reduced graphene oxide nanocomposite: a potential method for environmental remediation. Food Chem Toxicol 161:112843

    Article  CAS  PubMed  Google Scholar 

  29. Beitollahi H, Mahmoudi Moghaddam H, Tajik S (2019) Voltammetric determination of bisphenol A in water and juice using a lanthanum (III)-doped cobalt (II, III) nanocube modified carbon screen-printed electrode. Anal Lett 52:1432–1444

    Article  CAS  Google Scholar 

  30. Zhang Z, Karimi-Maleh H (2023) Label-free electrochemical aptasensor based on gold nanoparticles/titanium carbide MXene for lead detection with its reduction peak as index signal. Adv Compos Hybrid Mater 6:68

    Article  CAS  Google Scholar 

  31. Tajik S, Orooji Y, Karimi F, Ghazanfari Z, Beitollahi H, Shokouhimehr M, Jang HW (2021) High performance of screen-printed graphite electrode modified with Ni–Mo-MOF for voltammetric determination of amaranth. J Food Meas Charact 15:4617–4622

    Article  Google Scholar 

  32. Bijad M, Karimi-Maleh H, Farsi M, Shahidi SA (2018) An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples. J Food Meas Charact 12:634–640

    Article  Google Scholar 

  33. Hosseini Fakhrabad A, Sanavi Khoshnood R, Abedi MR, Ebrahimi M (2021) Fabrication a composite carbon paste electrodes (CPEs) modified with Multi-Wall Carbon Nano-Tubes (MWCNTs/N, N-Bis (salicyliden)-1,3-propandiamine) for determination of lanthanum (III). Eurasian Chem Commun 3:627–634

    Google Scholar 

  34. Janitabar Darzi S, Bastami H (2022) Au decorated mesoporous TiO2 as a high performance photocatalyst towards crystal violet dye. Adv J Chem A 5:22–30

    Google Scholar 

  35. Sheikhshoaie I, Rezazadeh A, Ramezanpour S (2022) Removal of pb (II) from aqueous solution by gel combustion of a new nano sized Co3O4/ZnO composite. Asian J Nanosci Mater 5:336–345

    CAS  Google Scholar 

  36. Khazaeli P, Alaei M, Khaksarihadad M, Ranjbar M (2020) Preparation of PLA/chitosan nanoscaffolds containing cod liver oil and experimental diabetic wound healing in male rats study. J Nanobiotechnol 18:1–9

    Article  Google Scholar 

  37. Liang Z, Zhao R, Qiu T, Zou R, Xu Q (2019) Metal-organic framework-derived materials for electrochemical energy applications. EnergyChem 1:100001

    Article  Google Scholar 

  38. Tallapaneni V, Mude L, Pamu D, Karri VVSR (2022) Formulation, characterization and in vitro evaluation of dual-drug loaded biomimetic chitosan-collagen hybrid nanocomposite scaffolds. J Med Chem Sci 5:1059–1074

    CAS  Google Scholar 

  39. Karaman C, Karaman O, Show PL, Orooji Y, Karimi-Maleh H (2021) Utilization of a double-cross-linked amino-functionalized three-dimensional graphene networks as a monolithic adsorbent for methyl orange removal: equilibrium, kinetics, thermodynamics and artificial neural network modeling. Environ Res 207:112156

    Article  PubMed  Google Scholar 

  40. Shete RC, Fernandes PR, Borhade BR, Pawar AA, Sonawane MC, Warude NS (2022) Review of cobalt oxide nanoparticles: green synthesis, biomedical applications, and toxicity studies. J Chem Rev 4:331–345

    CAS  Google Scholar 

  41. Hasanpour F, Taei M, Fouladgar M, Salehi M (2022) Au nano dendrites/composition optimized nd-dopped cobalt oxide as an efficient electrocatalyst for ethanol oxidation. J Appl Organomet Chem 2:188–196

    Google Scholar 

  42. Karimi-Maleh H, Darabi R, Karimi F, Karaman C, Shahidi SA, Zare N, Baghayeri M, Fu L, Rostamnia S, Rouhi J (2023) State-of-art advances on removal, degradation and electrochemical monitoring of 4-aminophenol pollutants in real samples: a review. Environ Res 222:115338

    Article  CAS  PubMed  Google Scholar 

  43. Nareetsile F, Matshwele JT, Odisitse S (2022) Metallo-Drugs as promising antibacterial agents and their modes of action. J Med Chem Sci 5:1109–1131

    CAS  Google Scholar 

  44. Qi X, Teng Z, Yu J, Jia D, Zhang Y, Pan H (2023) A simple one-step synthesis of Fe3O4/N-rGO nanocomposite for sensitive electrochemical detection of chloramphenicol. Mater Lett 330:133350

    Article  CAS  Google Scholar 

  45. Vajhadin F, Mazloum-Ardakani M, Sahoo BR, Moshtaghioun SM, Hartel MC (2023) Hierarchal polyaniline-folic acid nanostructures act as a platform for electrochemical detection of tumor cells. Anal Biochem 662:114914

    Article  CAS  PubMed  Google Scholar 

  46. Tajik S, Beitollahi H, Jang HW, Shokouhimehr M (2021) A screen printed electrode modified with Fe3O4@polypyrrole-Pt core-shell nanoparticles for electrochemical detection of 6-mercaptopurine and 6-thioguanine. Talanta 232:122379

    Article  CAS  PubMed  Google Scholar 

  47. Aslam F, Shah A, Ullah N, Munir S (2023) Multiwalled carbon nanotube/Fe-doped ZnO-based sensors for droplet electrochemical detection and degradation monitoring of brilliant green. ACS Appl Nano Mater 6:6172–6185

    Article  CAS  Google Scholar 

  48. Karimi-Maleh H, Liu Y, Li Z, Darabi R, Orooji Y, Karaman C, Karimi F, Baghayeri M, Rouhi J, Fu L (2023) Calf thymus ds-DNA intercalation with pendimethalin herbicide at the surface of ZIF-8/Co/rGO/C3N4/ds-DNA/SPCE; A bio-sensing approach for pendimethalin quantification confirmed by molecular docking study. Chemosphere 332:138815

  49. Mohammadi SZ, Beitollahi H, Bani Asadi E (2015) Electrochemical determination of hydrazine using a ZrO2 nanoparticles-modified carbon paste electrode. Environ Monit Assess 187:1–10

    Article  Google Scholar 

  50. Qian L, Durairaj S, Prins S, Chen A (2021) Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosens Bioelectron 175:112836

    Article  CAS  PubMed  Google Scholar 

  51. Ansari S, Ansari MS, Satsangee SP, Jain R (2019) WO3 decorated graphene nanocomposite based electrochemical sensor: a prospect for the detection of anti-anginal drug. Anal Chim Acta 1046:99–109

    Article  CAS  PubMed  Google Scholar 

  52. Rezvani SA, Soleymanpour A (2019) Application of a sensitive electrochemical sensor modified with WO3 nanoparticles for the trace determination of theophylline. Microchem J 149:104005

    Article  CAS  Google Scholar 

  53. Ahmad K, Kim H (2022) Design and fabrication of WO3/SPE for dopamine sensing application. Mater Chem Phys 287:126298

    Article  CAS  Google Scholar 

  54. Ahmad K, Kim H (2022) Synthesis of MoS2/WO3 hybrid composite for hydrazine sensing applications. Mater Sci Semicond Process 148:106803

    Article  CAS  Google Scholar 

  55. Rajkumar C, Kim H (2021) Hybrid nanostructures of Pd–WO3 grown on graphitic carbon nitride for trace level electrochemical detection of paraoxon-ethyl. Microchim Acta 188:233

    Article  CAS  Google Scholar 

  56. Lee H, Kim Y, Yu A, Jin D, Jo A, Lee Y, Lee C (2019) An efficient electrochemical sensor driven by hierarchical hetero-nanostructures consisting of RuO2 nanorods on WO3 nanofibers for detecting biologically relevant molecules. Sensors 19:3295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vanitha C, Sanmugam A, Yogananth A, Rajasekar M, Kuppusamy PG, Devasagayam G (2022) A facile synthesis of polyaniline-WO3 hybrid nanocomposite for enhanced dopamine detection. Mater Lett 328:133149

    Article  CAS  Google Scholar 

  58. Ghorbanizamani F, Moulahoum H, Celik EG, Timur S (2022) Ionic liquid-hydrogel hybrid material for enhanced electron transfer and sensitivity towards electrochemical detection of methamphetamine. J Mol Liq 361:119627

    Article  CAS  Google Scholar 

  59. Karimi-Maleh H, Fakude CT, Mabuba N, Peleyeju GM, Arotiba OA (2019) The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J Colloid Interface Sci 554:603–610

    Article  CAS  PubMed  Google Scholar 

  60. Cetinkaya A, Kaya SI, Yence M, Budak F, Ozkan SA (2022) Ionic liquid-based materials for electrochemical sensor applications in environmental samples. Trends Environ Anal Chem 37:e00188

    Article  Google Scholar 

  61. Ikram M, Sajid MM, Javed Y, Afzal AM, Shad NA, Sajid M, Razaq A (2021) Crystalline growth of tungsten trioxide (WO3) nanorods and their development as an electrochemical sensor for selective detection of vitamin C. J Mater Sci Mater Electron 32:6344–6357

    Article  CAS  Google Scholar 

  62. Pourtaheri E, Taher MA, Beitollahi H, Ranjbar M (2016) ZnIn2S4 nanoparticles modified carbon paste electrode for voltammetric determination of penicillamine. Anal Bioanal Electrochem 8:803–813

    CAS  Google Scholar 

  63. Amiri M, Nekoiean K, Bezaatpour A (2012) Nanomolar determination of penicillamine by using a novel cobalt/polyaniline/carbon paste nanocomposite electrode. Electroanalysis 24:2186–2192

    Article  CAS  Google Scholar 

  64. Keyvanfard M, Najjarian N, Alizad K (2017) Electrocatalytic determination of penicillamine using multiwall carbon nanotubes paste electrode and chlorpromazine as a mediator. J Anal Chem 72:1045–1050

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peyman Mohammadzadeh Jahani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tajik, S., Jahani, P.M. Voltammetric Quantification of D-penicillamine by Using a Carbon Paste Electrode Modified with WO3 Nanorods and Ionic Liquid as an Efficient Electrochemical Sensing Platform. Top Catal 67, 853–863 (2024). https://doi.org/10.1007/s11244-023-01874-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01874-9

Keywords

Navigation