Skip to main content
Log in

Electrochemical determination of hydrazine using a ZrO2 nanoparticles-modified carbon paste electrode

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In the present paper, the use of a carbon paste electrode modified by 3-(4′-amino-3′-hydroxy-biphenyl-4-yl)-acrylic acid (3,4′AA) and ZrO2 nanoparticles prepared by a simple and rapid method was described. The heterogeneous electron transfer properties of (3,4′AA) coupled to ZrO2 nanoparticles at the carbon paste electrode were investigated using cyclic voltammetry, chronoamperometry, and square wave voltammetry in aqueous buffer solutions. Under the optimized conditions, the square wave voltammetric peak currents of hydrazine increased linearly with hydrazine concentrations in the range of 2.5 × 10−8 to 5.0 × 10−5 M, and detection limit of 14 nM was obtained for hydrazine. Finally, this modified electrode was used for the determination of hydrazine in water samples, using standard addition method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adekunle, A. S., & Ozoemena, K. I. (2008). Insights into the electro-oxidation of hydrazine at single-walled carbon-nanotube-modified edge-plane pyrolytic graphite electrodes electro-decorated with metal and metal oxide films. Journal of Solid State Electrochemistry, 12(10), 1325–1336.

    Article  CAS  Google Scholar 

  • Afkhami, A., & Zarei, A. R. (2004). Simultaneous spectrophotometric determination of hydrazine and phenylhydrazine based on their condensation reactions with different aromatic aldehydes in micellar media using Hpoint standard addition method. Talanta, 62(3), 559–565.

    Article  CAS  Google Scholar 

  • Amlathe, S., & Gupta, V. K. (1988). Spectrophotometric determination of trace amounts of hydrazine in polluted water. Analyst, 113(9), 1481–1483.

    Article  CAS  Google Scholar 

  • Bard, A. J., & Faulkner, L. R. (2001). Electrochemical methods fundamentals and applications (2nd ed.). New York: Wiley.

    Google Scholar 

  • Beitollahi, H., & Ghorbani, F. (2013). Benzoylferrocene-modified carbon nanotubes paste electrode as a voltammetric sensor for determination of hydrochlorothiazide in pharmaceutical and biological samples. Ionics, 19(11), 1673–1679.

    Article  CAS  Google Scholar 

  • Beitollahi, H., & Mostafavi, M. (2014). Nanostructured base electrochemical sensor for simultaneous quantification and voltammetric studies of levodopa and carbidopa in pharmaceutical products and biological samples. Electroanalysis, 26(5), 1090–1098.

    Article  CAS  Google Scholar 

  • Beitollahi, H., & Sheikhshoaie, I. (2011). Electrocatalytic and simultaneous determination of isoproterenol, uric acid and folic acid at molybdenum (VI) complex-carbon nanotube paste electrode. Electrochimica Acta, 56(27), 10259–10263.

    Article  CAS  Google Scholar 

  • Beitollahi, H., Karimi-Maleh, H., & Khabazzadeh, H. (2008). Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-Oxo-3-phenyl-3,4-dihydroquinazolinyl)- N′-phenyl-hydrazinecarbothioamide. Analytical Chemistry, 80(24), 9848–9851.

    Article  CAS  Google Scholar 

  • Beitollahi, H., Raoof, J. B., & Hosseinzadeh, R. (2011). Application of a carbon-paste electrode modified with 2,7- bis(ferrocenyl ethyl)fluoren-9-one and carbon nanotubes for voltammetric determination of levodopa in the presence of uric acid and folic acid. Electroanalysis, 23(8), 1934–1940.

    Article  CAS  Google Scholar 

  • Beitollahi, H., Tajik, S., Karimi Maleh, H., & Hosseinzadeh, R. (2013). Application of a 1-benzyl-4-ferrocenyl-1H-[1,2,3]-triazole/carbon nanotube modified glassy carbon electrode for voltammetric determination of hydrazine in water samples. Applied Organometalic Chemistry, 27(8), 444–450.

    Article  CAS  Google Scholar 

  • Brahman, P. K., Dar, R. A., Tiwari, S., & Pitre, K. S. (2012). Voltammetric determination of anticancer drug flutamide in surfactant media at polymer film modified carbon paste electrode. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 396, 8–15.

    Article  CAS  Google Scholar 

  • Budkuley, J. S. (1992). Determination of hydrazine and sulphite in the presence of one another. Microchimica Acta, 108(1–2), 103–105.

    Article  CAS  Google Scholar 

  • Chitravathi, S., Kumara Swamy, B. E., Mamatha, G. P., & Sherigara, B. S. (2012). Electrochemical behavior of poly (naphthol green B)-film modified carbon paste electrode and its application for the determination of dopamine and uric acid. Journal of Electroanalytical Chemistry, 667, 66–75.

    Article  CAS  Google Scholar 

  • Devnani, H., & Satsangee, S. P. (2013). Voltammetric trace determination of mercury using plant refuse modified carbon paste electrodes. Environmental Monitoring and Assessment, 185(11), 9333–9342.

    Article  CAS  Google Scholar 

  • Ensafi, A. A., & Rezaei, B. (1998). Flow injection determination of hydrazine with fluorimetric detection. Talanta, 47(3), 645–649.

    Article  CAS  Google Scholar 

  • Esfandiari Baghbamidi, S., Beitollahi, H., Mohammadi, S. Z., Tajik, S., Soltani-Nejad, S., & Soltani-Nejad, V. (2013). Nanostructure-based electrochemical sensor for the voltammetric determination of benserazide, uric acid, and folic acid. Chinese Journal of Catalysis, 34(10), 1869–1875.

    Article  Google Scholar 

  • Evgen’yev, M. I., Garmonov, S. Y., Evgen’yeva, I. I., & Budnikov, H. C. (1995). Determination of hydrazine derivatives by flow-injection analysis with spectrophotometric detection. Talanta, 42(10), 1465–1469.

    Article  Google Scholar 

  • Fonseca, J., Dohrn, R., & Peper, S. (2011). High-pressure fluid phase equilibria: experimental methods and systems investigated. Critical Reviews in Analytical Chemistry, 41, 282–313.

    Article  Google Scholar 

  • Galus, Z. (1976). Fundamentals of electrochemical analysis. New York: Ellis Horwood.

    Google Scholar 

  • Geraldo, D. A., Togo, C. A., Limson, J., & Nyokong, T. (2008). Electrooxidation of hydrazine catalyzed by noncovalently functionalized single-walled carbon nanotubes with CoPc. Electrochimica Acta, 53(27), 8051–8057.

    Article  CAS  Google Scholar 

  • Ghaedi, M., Naderi, S., Montazerozohori, M., Sahraei, R., Daneshfar, A., & Taghavimoghadam, N. (2012). Modified carbon paste electrodes for Cu(II) determination. Materials Science and Engineering C, 32(8), 2274–2279.

    Article  CAS  Google Scholar 

  • Gojon, C., Dureault, B., Hovnanian, N., & Guizard, C. (1999). Optical chemical hydrazine sensor from hybrid organic-inorganic materials. Journal of Sol-Gel Science and Technology, 14(2), 163–173.

    Article  CAS  Google Scholar 

  • Goyal, R. N., Gupta, V. K., & Bachheti, N. (2007). Fullerene-C60- modified electrode as a sensitive voltammetric sensor for detection of nandrolone—an anabolic steroid used in doping. Analytica Chimica Acta, 597, 82–89.

    Article  CAS  Google Scholar 

  • Goyal, R. N., Gupta, V. K., Bachheti, N., & Sharma, R. N. (2008). Electrochemical sensor for the determination of dopamine in presence of high concentration of ascorbic acid using a fullerene-C60 coated gold electrode. Electroanalysis, 20, 757–764.

    Article  CAS  Google Scholar 

  • Guo, S. X., & Khoo, S. B. (1997). Formation of a mercury plated carbon paste electrode by electroreduction of a mercury(II) diethyldithiocarbamate modified carbon paste. Environmental Monitoring and Assessment, 44(1–3), 471–480.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Mangla, R., Khurana, U., & Kumar, P. (1999). Determination of uranyl ions using poly (vinyl chloride) based 4-tert-butylcalix [6] arene membrane sensor. Electroanalysis, 11, 573–576.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Prasad, R., Kumar, P., & Mangla, R. (2000). New nickel(II) selective potentiometric sensor based on 5,7,12,14- tetramethyldibenzotetraazaannulene in a poly(vinyl chloride) matrix. Analytica Chimica Acta, 420, 19–27.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Chandra, S., & Mangla, R. (2002). Dicyclohexano- 18-crown-6 as active material in PVC matrix membrane for the fabrication of cadmium selective potentiometric sensor. Electrochimica Acta, 47, 1579–1586.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Jain, S., & Chandra, S. (2003). Chemical sensor for lanthanum(III) determination using aza-crown as ionophore in poly(vinyl chloride) matrix. Analytica Chimica Acta, 486, 199–207.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Chandra, S., & Lang, H. (2005). A highly selective mercury electrode based on a diamine donor ligand. Talanta, 66, 575–580.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Jain, A. K., Kumar, P., Agarwal, S., & Maheshwari, G. (2006a). Chromium(III)-selective sensor based on tri-othymotide in PVC matrix. Sensors and Actuators B: Chemical, 113, 182–186.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Jain, A. K., Maheshwari, G., Lang, H., & Ishtaiwi, Z. (2006b). Copper(II)-selective potentiometric sensors based on porphyrins in PVC matrix. Sensors and Actuators B: Chemical, 117, 99–106.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Jain, A. K., & Kumar, P. (2006c). PVC-based membranes of N, N’-dibenzyl-1,4,10,13-tetraoxa-7,16- diazacyclooctadecane as Pb(II)-selective sensor. Sensors and Actuators B: Chemical, 120, 259–265.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Singh, A. K., Mehtab, S., & Gupta, B. (2006d). A cobalt(II)-selective PVC membrane based on a Schiff base complex of N, N’-bis(salicylidene)-3,4-diaminotoluene. Analytica Chimica Acta, 566, 5–10.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Singh, A. K., Khayat, M. A. I., & Gupta, B. (2007). Neutral carriers based polymeric membrane electrodes for selective determination of mercury (II). Analytica Chimica Acta, 590, 81–90.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Jain, R., Radhapyari, K., Jadon, N., & Agarwal, S. (2011a). Voltammetric techniques for the assay of pharmaceuticals—a review. Analytical Biochemistry, 408, 179–196.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Nayak, A., Agarwal, S., & Singhal, B. (2011b). Recent advances on potentiometric membrane sensors for pharmaceutical analysis. Combinatorial Chemistry & High Throughput Screening, 14(4), 284–302.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Singh, L. P., Singh, R., Upadhyay, N., Kaur, S. R., & Sethi, B. (2012). A novel copper (II) selective sensor based on dimethyl 4, 4′ (o-phenylene) bis(3-thioallophanate) in PVC matrix. Journal of Molecular Liquids, 174, 11–16.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Sethi, B., Sharma, R. A., Agarwa, S., & Bharti, A. (2013). Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4]-arene as a cationic receptor. Journal of Molecular Liquids, 177, 114–118.

    Article  CAS  Google Scholar 

  • Hočevar, S. B., & Ogorevc, B. (2007). Preparation and characterization of carbon paste micro-electrode based on carbon nano-particles. Talanta, 74(3), 405–411.

    Article  Google Scholar 

  • Jain, A. K., Gupta, V. K., Singh, L. P., & Khurana, U. (1997). Macrocycle based membrane sensors for the determination of cobalt(II) ions. Analyst, 122, 583–586.

    Article  CAS  Google Scholar 

  • Jain, A. K., Gupta, V. K., Singh, L. P., & Raisoni, J. R. (2006). A comparative study of Pb2+ 11 sensors based on derivatized tetrapyrazole and calix[4]arene receptors. Electrochimica Acta, 51, 2547–2553.

    Article  CAS  Google Scholar 

  • Jain, R., Gupta, V. K., Jadon, N., & Radhapyari, K. (2010). Voltammetric determination of cefixime in pharmaceuticals and biological fluids. Analytical Biochemistry, 407, 79–88.

    Article  CAS  Google Scholar 

  • Jayasri, D., & Sriman, N. S. (2007). Amperometric determination of hydrazine at manganese hexacyanoferrate modified graphite–wax composite electrode. Journal of Hazardous Materials, 144(1–2), 348–354.

    Article  CAS  Google Scholar 

  • Karimi-Maleh, H., Tahernejad-Javazmi, F., Ensafi, A. A., Moradi, R., Mallakpour, S., & Beitollahi, H. (2014). A high sensitive biosensor based on FePt/CNTs nanocomposite/N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosensors and Bioelectronics, 60, 1–7.

    Article  CAS  Google Scholar 

  • Kirchherr, H. (1993). Determination of hydrazine in human plasma by high-performance liquid chromatography. Journal of Chromatography B, 617(1), 157–162.

    Article  CAS  Google Scholar 

  • Leakakos, T., & Shank, R. C. (1994). Hydrazine genotoxicity in the neonatal rat. Toxicology and Applied Pharmacology, 126(2), 295–300.

    Article  CAS  Google Scholar 

  • Mahanthesha, K. R., Kumara Swamy, B. E., Chandra, U., Sharath Shankar, S., & Pai, K. V. (2012). Electrocatalytic oxidation of dopamine at murexide and TX-100 modified carbon paste electrode: a cyclic voltammetric study. Journal of Molecular Liquids, 172, 119–124.

    Article  CAS  Google Scholar 

  • Mahmoudi Moghaddam, H., Beitollahi, H., Tajik, S., Malakootian, M., & Karimi Maleh, H. (2014). Simultaneous determination of hydroxylamine and phenol using a nanostructure-based electrochemical sensor. Environmental Monitoring and Assessment, 186(11), 7431–7441.

    Article  Google Scholar 

  • Mashhadizadeh, M. H., & Shamsipur, M. (1997). Silver(I)-selective membrane electrode based on hexathia-18-crown-6. Electroanalysis, 9, 478–480.

    Article  Google Scholar 

  • Mazloum-Ardakani, M., Rajabi, H., Mirjalili, B. B. F., Beitollahi, H., & Akbari, A. (2010). Nanomolar determination of hydrazine by TiO2 nanoparticles modified carbon paste electrode. Journal of Solid State Electrochemistry, 14(12), 2285–2292.

    Article  CAS  Google Scholar 

  • Mazloum-Ardakani, M., Taleat, Z., Beitollahi, H., & Naeimi, H. (2011). Nanomolar concentrations determination of hydrazine by a modified carbon paste electrode incorporating TiO2 nanoparticles. Nanoscale, 3(4), 1683–1689.

    Article  CAS  Google Scholar 

  • Mo, J.-W., Ogorevc, B., Zhang, X., & Pihlar, B. (2000). Cobalt and copper hexacyanoferrate modified carbon fiber microelectrode as an all-solid potentiometric microsensor for hydrazine. Electroanalysis, 12(1), 48–54.

    Article  CAS  Google Scholar 

  • Mokhtari, A., Karimi-Maleh, H., Ensafi, A. A., & Beitollahi, H. (2012). Application of modified multiwall carbon nanotubes paste electrode for simultaneous voltammetric determination of morphine and diclofenac in biological and pharmaceutical samples. Sensors and Actuators B: Chemical, 169, 96–105.

    Article  CAS  Google Scholar 

  • Molaakbari, E., Mostafavi, A., & Beitollahi, H. (2014). First electrochemical report for simultaneous determination of norepinephrine, tyrosine and nicotine using a nanostructure based sensor. Electroanalysis, 26, 2252–2260.

    Article  CAS  Google Scholar 

  • Mori, M., Tanaka, K., Xu, Q., Ikedo, M., Taoda, H., & Hu, W. (2004). Highly sensitive determination of hydrazine by ion-exclusion chromatography with ion-exchange enhancement of conductivity detection. Journal of Chromatography A, 1039(1–2), 135–139.

    Article  CAS  Google Scholar 

  • Moyo, M., Okonkwo, J. O., & Agyei, N. M. (2014). Maize tassel-modified carbon paste electrode for voltammetric determination of Cu(II). Environmental Monitoring and Assessment, 186(8), 4807–4817.

    Article  CAS  Google Scholar 

  • Oztekin, Y., Tok, M., Bilici, E., Mikoliunaite, L., Yazicigil, Z., Ramanaviciene, A., & Ramanavicius, A. (2012). Copper nanoparticle modified carbon electrode for determination of dopamine. Electrochimica Acta, 76, 201–207.

    Article  CAS  Google Scholar 

  • Pinter, J. S., Brown, K. L., Young, P. A. D., & Peaslee, G. F. (2007). Amperometric detection of hydrazine by cyclic voltammetry and flow injection analysis using ruthenium modified glassy carbon electrodes. Talanta, 71(3), 1219–1225.

    Article  CAS  Google Scholar 

  • Prasad, R., Gupta, V. K., & Kumar, A. (2004). Metallotetraazaporphyrin based anion sensors: regulation of sensor characteristics through central metal ion coordination. Analytica Chimica Acta, 508, 61–70.

    Article  CAS  Google Scholar 

  • Raoof, J. B., Ojani, R., Beitollahi, H., & Hosseinzadeh, R. (2006). Electrocatalytic oxidation and highly selective voltammetric determination of l-cysteine at the surface of a1-[4-(ferrocenyl ethynyl)phenyl]-1-ethanone modified carbon paste electrode. Analytical Sciences, 22(9), 1213–1220.

    Article  CAS  Google Scholar 

  • Safavi, A., & Karimi, M. A. (2002). Flow injection chemiluminescence determination of hydrazine by oxidation with chlorinated isocyanurates. Talanta, 58(4), 785–792.

    Article  CAS  Google Scholar 

  • Sax, N. I. (1980). Dangerous properties of industrial materials (4th ed., p. 814). New York: van Nostrand-Reinhold.

    Google Scholar 

  • Seifart, H. I., Gent, W. L., Parkin, D. P., van Jaarsveld, P. P., & Donald, P. R. (1995). High-performance liquid chromatographic determination of isoniazid, acetylisoniazid and hydrazine in biological fluids. Journal of Chromatography B, 674(2), 269–275.

    Article  CAS  Google Scholar 

  • Serpi, C., Kovatsi, L., & Girousi, S. (2014). Electroanalytical quantification of total dsDNA extracted from human sample using, an ionic liquid modified, carbon nanotubes paste electrode. Analytica Chimica Acta, 812, 26–32.

    Article  CAS  Google Scholar 

  • Shustina, R., & Lesser, J. H. (1991). Liquid chromatographic determination of hydrazine, carbohydrazide and thiocarbohydrazide in aqueous solutions. Journal of Chromatography A, 464(28), 208–212.

    Article  Google Scholar 

  • Siangproh, W., Chailapakul, O., Laocharoensuk, R., & Wang, J. (2005). Microchip capillary electrophoresis/electrochemical detection of hydrazine compounds at a cobalt phthalocyanine modified electrochemical detector. Talanta, 67(5), 903–907.

    Article  CAS  Google Scholar 

  • Srivastava, S. K., Gupta, V. K., & Jain, S. (1996). PVC-based 2,2, 2-cryptand sensor for zinc ions. Analytical Chemistry, 68, 1272–1275.

    Article  CAS  Google Scholar 

  • Sun, W., Wang, Y., Gong, S., Cheng, Y., Shi, F., & Sun, Z. (2013). Application of poly(acridine orange) and graphene modified carbon/ionic liquid paste electrode for the sensitive electrochemical detection of rutin. Electrochimica Acta, 109, 298–304.

    Article  CAS  Google Scholar 

  • Valle, M. A., Gacitua, M., Diaz, F. R., Armijo, F., & Soto, J. P. (2012). Electro-synthesis and characterization of polythiophene nano-wires/platinum nano-particles composite electrodes. Study of formic acid electro-catalytic oxidation. Electrochimica Acta, 71, 277–282.

    Article  Google Scholar 

  • Wang, Y., Wu, Y., Xie, J., & Hu, X. (2013). Metal–organic framework modified carbon paste electrode for lead sensor. Sensors and Actuators B: Chemical, 177, 1161–1166.

    Article  CAS  Google Scholar 

  • Yu, X., Chen, Y., Chang, Z. L., Tang, F., & Wu, X. (2013). β-Cyclodextrin non-covalently modified ionic liquid-based carbon paste electrode as a novel voltammetric sensor for specific detection of bisphenol A. Sensors and Actuators B: Chemical, 186, 648–656.

    Article  CAS  Google Scholar 

  • Zheng, H., & Shank, R. C. (1996). Changes in methyl-sensitive restriction sites of liver DNA from hamsters chronically exposed to hydrazine sulfate. Carcinogenesis, 17(12), 2711–2717.

    Article  CAS  Google Scholar 

  • Zhike, H., Xinglian, L., Qingyao, L., Hongwu, T., Ximao, Y., Hui, C., & Yune, Z. (1996). Automatic injection analysis with chemiluminescence: detection determination of hydrazine. Microchemical Journal, 53(3), 356–360.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Payame Noor University for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayed Zia Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, S.Z., Beitollahi, H. & Bani Asadi, E. Electrochemical determination of hydrazine using a ZrO2 nanoparticles-modified carbon paste electrode. Environ Monit Assess 187, 122 (2015). https://doi.org/10.1007/s10661-015-4309-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4309-9

Keywords

Navigation