Skip to main content

Advertisement

Log in

Recent Development of Nanostructured Nickel Metal-Based Electrocatalysts for Hydrogen Evolution Reaction: A Review

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Carbon emission from burning fossil fuels associated with anthropogenic activities has caused severe environmental issues and extreme weather events linked to human-induced climate change. In recent years, scientists have been focusing on renewable energy resources for environmental remediation and green production to mitigate the harmful effects of a climate crisis. Electrochemical water splitting is emerging to produce green hydrogen from water electrolysis, which is considered a major fuel source for the future. In efforts to replace precious Pt-based electrocatalysts, nickel (Ni) metal-based materials have gained huge attraction due to their abundant availability, low price, and high activity. Herein, we summarized significant strategies and highlighted recent advances in electrochemical hydrogen generation from water splitting over Ni metal-based electrocatalysts, mainly categorized by type of Ni-based catalysts. The hydrogen evolution reaction (HER) insights have been analyzed and discussed via modern techniques, and then the correlation between catalytic performances and the tailor of electrocatalysts has been proposed. The conclusions and prospects with discussions of recent improvements, known technological hurdles, and promising opportunities for future discovery are presented.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Peng W, Chuong Nguyen TH, Nguyen DLT, Wang T, Van Thi TT, Le TH, Le HK, Grace AN, Singh P, Raizadaa P, Nguyen Dinh MT, Nguyen CC, Kim SY, Le QV (2021) A roadmap towards the development of superior photocatalysts for solar- driven CO2-to-fuels production. Renew Sustain Energy Rev 148:111298. https://doi.org/10.1016/j.rser.2021.111298

    Article  CAS  Google Scholar 

  2. Nguyen DLT, Do HH, Nguyen MT, Vo D-VN, Nguyen V-H, Nguyen CC, Kim SY, Le QV (2021) Electrochemical conversion of carbon dioxide over silver-based catalysts: recent progress in cathode structure and interface engineering. Chem Eng Sci 234:116403. https://doi.org/10.1016/j.ces.2020.116403

    Article  CAS  Google Scholar 

  3. Le QV, Nguyen V-H, Nguyen TD, Sharma A, Rahman G, Nguyen DLT (2021) Light-driven reduction of carbon dioxide: Altering the reaction pathways and designing photocatalysts toward value-added and renewable fuels. Chem Eng Sci 237:116547. https://doi.org/10.1016/j.ces.2021.116547

    Article  CAS  Google Scholar 

  4. Dutta V, Sharma S, Raizada P, Khan AAP, Asiri AM, Nadda A, Singh P, Van Le Q, Huang C-W, Nguyen DLT (2021) Recent advances and emerging trends in (BiO)2CO3 based photocatalysts for environmental remediation: a review. Surf Interfaces. https://doi.org/10.1016/j.surfin.2021.101273

    Article  Google Scholar 

  5. Xia C, Kirlikovali KO, Nguyen THC, Nguyen XC, Tran QB, Duong MK, Nguyen Dinh MT, Nguyen DLT, Singh P, Raizada P, Nguyen V-H, Kim SY, Singh L, Nguyen CC, Shokouhimehr M, Le QV (2021) The emerging covalent organic frameworks (COFs) for solar-driven fuels production. Coord Chem Rev 446:214117. https://doi.org/10.1016/j.ccr.2021.214117

    Article  CAS  Google Scholar 

  6. Nguyen TP, Nguyen DL, Nguyen V-H, Le T-H, Vo D-VN, Trinh QT, Bae S-R, Chae SY, Kim SY, Le QV (2020) Recent advances in TiO2-based photocatalysts for reduction of CO2 to fuels. Nanomaterials. https://doi.org/10.3390/nano10020337

    Article  Google Scholar 

  7. Ross MB, De Luna P, Li Y, Dinh C-T, Kim D, Yang P, Sargent EH (2019) Designing materials for electrochemical carbon dioxide recycling. Nat Catal. https://doi.org/10.1038/s41929-019-0306-7

    Article  Google Scholar 

  8. Kondratenko EV, Mul G, Baltrusaitis J, Larrazábal GO, Pérez-Ramírez J (2013) Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ Sci 6(11):3112–3135. https://doi.org/10.1039/C3EE41272E

    Article  CAS  Google Scholar 

  9. Soni V, Xia C, Cheng CK, Nguyen V-H, Nguyen DLT, Bajpai A, Kim SY, Le QV, Khan AAP, Singh P, Raizada P (2021) Advances and recent trends in cobalt-based cocatalysts for solar-to-fuel conversion. Appl Mater Today 24:101074. https://doi.org/10.1016/j.apmt.2021.101074

    Article  Google Scholar 

  10. Zhang W, Hu Y, Ma L, Zhu G, Wang Y, Xue X, Chen R, Yang S, Jin Z (2018) Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv Sci 5(1):1700275. https://doi.org/10.1002/advs.201700275

    Article  CAS  Google Scholar 

  11. Warren SC, Voïtchovsky K, Dotan H, Leroy CM, Cornuz M, Stellacci F, Hébert C, Rothschild A, Grätzel M (2013) Identifying champion nanostructures for solar water-splitting. Nat Mater 12(9):842–849

    Article  CAS  Google Scholar 

  12. Nguyen DLT, Kim Y, Hwang YJ, Won DH (2020) Progress in development of electrocatalyst for CO2 conversion to selective CO production. Carbon Energy 2(1):72–98. https://doi.org/10.1002/cey2.27

    Article  CAS  Google Scholar 

  13. Lee SY, Chae SY, Jung H, Lee CW, Nguyen DLT, Oh H-S, Min BK, Hwang YJ (2020) Controlling the C2+ product selectivity of electrochemical CO2 reduction on an electrosprayed Cu catalyst. J Mater Chem A. https://doi.org/10.1039/C9TA13173F

    Article  Google Scholar 

  14. Bok J, Lee SY, Lee B-H, Kim C, Nguyen DLT, Kim JW, Jung E, Lee CW, Jung Y, Lee HS, Kim J, Lee K, Ko W, Kim YS, Cho S-P, Yoo JS, Hyeon T, Hwang YJ (2021) Designing atomically dispersed Au on tensile-strained Pd for efficient CO2 electroreduction to formate. J Am Chem Soc 143(14):5386–5395. https://doi.org/10.1021/jacs.0c12696

    Article  CAS  Google Scholar 

  15. Hoang VC, Bui T-S, Nguyen HTD, Hoang TT, Rahman G, Le QV, Nguyen DLT (2021) Solar-driven conversion of carbon dioxide over nanostructured metal-based catalysts in alternative approaches: fundamental mechanisms and recent progress. Environ Res 202:111781. https://doi.org/10.1016/j.envres.2021.111781

    Article  CAS  Google Scholar 

  16. Nguyen V-H, Nguyen TP, Le T-H, Vo D-VN, Nguyen DLT, Trinh QT, Kim IT, Le QV (2020) Recent advances in two-dimensional transition metal dichalcogenides as photoelectrocatalyst for hydrogen evolution reaction. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.6335

    Article  Google Scholar 

  17. Nguyen V-H, Nguyen B-S, Jin Z, Shokouhimehr M, Jang HW, Hu C, Singh P, Raizada P, Peng W, Lam SS (2020) Towards artificial photosynthesis: Sustainable hydrogen utilization for photocatalytic reduction of CO2 to high-value renewable fuels. Chem Eng J 402:126184

    Article  CAS  Google Scholar 

  18. Lam SS, Nguyen V-H, Dinh MTN, Khieu DQ, La DD, Nguyen HT, Dai Viet NV, Xia C, Varma RS, Shokouhimehr M (2020) Mainstream avenues for boosting graphitic carbon nitride efficiency: towards enhanced solar light-driven photocatalytic hydrogen production and environmental remediation. J Mater Chem A 8(21):10571–10603

    Article  CAS  Google Scholar 

  19. Nouruzi N, Dinari M, Gholipour B, Mokhtari N, Farajzadeh M, Rostamnia S, Shokouhimehr M (2022) Photocatalytic hydrogen generation using colloidal covalent organic polymers decorated bimetallic Au-Pd nanoalloy (COPs/Pd-Au). Mol Catal 518:112058

    Article  CAS  Google Scholar 

  20. Zhang K, Kirlikovali KO, Varma RS, Jin Z, Jang HW, Farha OK, Shokouhimehr M (2020) Covalent organic frameworks: emerging organic solid materials for energy and electrochemical applications. ACS Appl Mater Interfaces 12(25):27821–27852

    Article  CAS  Google Scholar 

  21. Lee MK, Shokouhimehr M, Kim SY, Jang HW (2022) Two-dimensional metal-organic frameworks and covalent-organic frameworks for electrocatalysis: distinct merits by the reduced dimension. Adv Energy Mater 12(4):2003990

    Article  CAS  Google Scholar 

  22. Nguyen DLT, Lee CW, Na J, Kim M-C, Tu NDK, Lee SY, Sa YJ, Won DH, Oh H-S, Kim H, Min BK, Han SS, Lee U, Hwang YJ (2020) Mass transport control by surface graphene oxide for selective CO production from electrochemical CO2 reduction. ACS Catal 10(5):3222–3231. https://doi.org/10.1021/acscatal.9b05096

    Article  CAS  Google Scholar 

  23. Nguyen DLT, Jee MS, Won DH, Oh H-S, Min BK, Hwang YJ (2018) Effect of halides on nanoporous Zn-based catalysts for highly efficient electroreduction of CO2 to CO. Catal Commun 114:109–113. https://doi.org/10.1016/j.catcom.2018.06.020

    Article  CAS  Google Scholar 

  24. Nguyen DLT, Jee MS, Won DH, Jung H, Oh H-S, Min BK, Hwang YJ (2017) Selective CO2 reduction on zinc electrocatalyst: the effect of zinc oxidation state induced by pretreatment environment. ACS Sustain Chem Eng 5(12):11377–11386. https://doi.org/10.1021/acssuschemeng.7b02460

    Article  CAS  Google Scholar 

  25. Lee CW, Shin S-J, Jung H, Nguyen DLT, Lee SY, Lee WH, Won DH, Kim MG, Oh H-S, Jang T, Kim H, Min BK, Hwang YJ (2019) Metal-Oxide Interfaces for Selective Electrochemical C-C Coupling Reactions. ACS Energy Lett 4(9):2241–2248. https://doi.org/10.1021/acsenergylett.9b01721

    Article  CAS  Google Scholar 

  26. De Luna P, Hahn C, Higgins D, Jaffer SA, Jaramillo TF, Sargent EH (2019) What would it take for renewably powered electrosynthesis to displace petrochemical processes. Science 364:6438. https://doi.org/10.1126/science.aav3506

    Article  CAS  Google Scholar 

  27. Nguyen TP, Nguyen DLT, Nguyen V-H, Le T-H, Ly QV, Vo D-VN, Nguyen QV, Le HS, Jang HW, Kim SY, Le QV (2020) Facile synthesis of WS2 hollow spheres and their hydrogen evolution reaction performance. Appl Surf Sci 505:144574. https://doi.org/10.1016/j.apsusc.2019.144574

    Article  CAS  Google Scholar 

  28. Rahman G, Joo O-S (2012) Photoelectrochemical water splitting at nanostructured α-Fe2O3 electrodes. Int J Hydrogen Energy 37(19):13989–13997

    Article  CAS  Google Scholar 

  29. Najaf Z, Nguyen DLT, Chae SY, Joo O-S, Shah AUHA, Vo D-VN, Nguyen V-H, Le QV, Rahman G (2021) Recent trends in development of hematite (α-Fe2O3) as an efficient photoanode for enhancement of photoelectrochemical hydrogen production by solar water splitting. Int J Hydrogen Energy 46(45):23334–23357. https://doi.org/10.1016/j.ijhydene.2020.07.111

    Article  CAS  Google Scholar 

  30. Marques Mota F, Nguyen DLT, Lee J-E, Piao H, Choy J-H, Hwang YJ, Kim DH (2018) Toward an Effective Control of the H2 to CO Ratio of Syngas through CO2 Electroreduction over Immobilized Gold Nanoparticles on Layered Titanate Nanosheets. ACS Catal 8(5):4364–4374. https://doi.org/10.1021/acscatal.8b00647

    Article  CAS  Google Scholar 

  31. Rosen MA, Koohi-Fayegh S (2016) The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems. Energy Ecol Environ 1(1):10–29. https://doi.org/10.1007/s40974-016-0005-z

    Article  Google Scholar 

  32. Do HH, Nguyen DLT, Nguyen XC, Le T-H, Nguyen TP, Trinh QT, Ahn SH, Vo D-VN, Kim SY, Le QV (2020) Recent progress in TiO2-based photocatalysts for hydrogen evolution reaction: a review. Arab J Chem 13(2):3653–3671. https://doi.org/10.1016/j.arabjc.2019.12.012

    Article  CAS  Google Scholar 

  33. Zhu J, Hu L, Zhao P, Lee LYS, Wong K-Y (2019) Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem Rev 120(2):851–918

    Article  Google Scholar 

  34. Subbaraman R, Tripkovic D, Chang K-C, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM (2012) Trends in activity for the water electrolyser reactions on 3 d M (Ni Co, Fe, Mn) hydr (oxy) oxide catalysts. Nat Mater 11(6):550–557

    Article  CAS  Google Scholar 

  35. Phuan YW, Ibrahim E, Chong MN, Zhu T, Lee B-K, Ocon JD, Chan ES (2017) In situ Ni-doping during cathodic electrodeposition of hematite for excellent photoelectrochemical performance of nanostructured nickel oxide-hematite pn junction photoanode. Appl Surf Sci 392:144–152

    Article  CAS  Google Scholar 

  36. Zhao G, Rui K, Dou SX, Sun W (2018) Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv Funct Mater 28(43):1803291

    Article  Google Scholar 

  37. Subbaraman R, Tripkovic D, Strmcnik D, Chang K-C, Uchimura M, Paulikas AP, Stamenkovic V, Markovic NM (2011) Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni (OH) 2-Pt interfaces. Science 334(6060):1256–1260

    Article  CAS  Google Scholar 

  38. Anantharaj S, Karthick K, Kundu S (2017) Evolution of layered double hydroxides (LDH) as high performance water oxidation electrocatalysts: A review with insights on structure, activity and mechanism. Mater Today Energy 6:1–26

    Article  Google Scholar 

  39. Anantharaj S, Ede S, Sakthikumar K, Karthick K, Mishra S, Kundu S (2016) ACS Catal 6:8069–8097

    Article  CAS  Google Scholar 

  40. Han L, Dong S, Wang E (2016) Adv Mater 28:9266–9291

    Article  CAS  Google Scholar 

  41. Danilovic N, Subbaraman R, Strmcnik D, Chang KC, Paulikas A, Stamenkovic V, Markovic NM (2012) Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni (OH) 2/metal catalysts. Angew Chem 124(50):12663–12666

    Article  Google Scholar 

  42. Anantharaj S, Noda S, Jothi VR, Yi S, Driess M, Menezes PW (2021) Strategies and perspectives to catch the missing pieces in energy-efficient hydrogen evolution reaction in alkaline media. Angew Chem Int Ed. https://doi.org/10.1002/ange.202015738

    Article  Google Scholar 

  43. Durst J, Siebel A, Simon C, Hasché F, Herranz J, Gasteiger HA (2014) Energy Environ Sci 7:2255

    Article  CAS  Google Scholar 

  44. Anantharaj S, Noda S, Driess M, Menezes PW (2021) The pitfalls of using potentiodynamic polarization curves for tafel analysis in electrocatalytic water splitting. ACS Energy Lett 6(4):1607–1611

    Article  CAS  Google Scholar 

  45. Parsons R (1958) The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans Faraday Soc 54:1053–1063

    Article  CAS  Google Scholar 

  46. Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110(11):6474–6502

    Article  CAS  Google Scholar 

  47. Sapountzi FM, Gracia JM, Fredriksson HO, Niemantsverdriet JH (2017) Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Prog Energy Combust Sci 58:1–35

    Article  Google Scholar 

  48. Zeradjanin AR, Grote JP, Polymeros G, Mayrhofer KJ (2016) A critical review on hydrogen evolution electrocatalysis: re-exploring the volcano-relationship. Electroanalysis 28(10):2256–2269

    Article  CAS  Google Scholar 

  49. Ďurovič M, Hnát J, Bouzek K (2021) Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral media a comparative Review. J Power Sources 493:229708

    Article  Google Scholar 

  50. Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T (2011) Density functional theory in surface chemistry and catalysis. Proc Natl Acad Sci 108(3):937–943

    Article  Google Scholar 

  51. Li L, Wang P, Shao Q, Huang X (2020) Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem Soc Rev 49(10):3072–3106

    Article  CAS  Google Scholar 

  52. Hammer B, Norskov JK (1995) Why gold is the noblest of all the metals. Nature 376(6537):238–240

    Article  CAS  Google Scholar 

  53. Sheng W, Zhuang Z, Gao M, Zheng J, Chen JG, Yan Y (2015) Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat Commun 6(1):1–6

    Article  Google Scholar 

  54. Setzler BP, Zhuang Z, Wittkopf JA, Yan Y (2016) Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells. Nat Nanotechnol 11(12):1020–1025

    Article  CAS  Google Scholar 

  55. McCrum IT, Koper MT (2020) The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat Energy 5(11):891–899

    Article  CAS  Google Scholar 

  56. Anantharaj S, Ede S, Karthick K, Sankar SS, Sangeetha K, Karthik P, Kundu S (2018) Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy Environ Sci 11(4):744–771

    Article  CAS  Google Scholar 

  57. Sultan S, Tiwari JN, Jang JH, Harzandi AM, Salehnia F, Yoo SJ, Kim KS (2018) Highly efficient oxygen reduction reaction activity of graphitic tube encapsulating nitrided CoxFey alloy. Adv Energy Mater 8(25):1801002

    Article  Google Scholar 

  58. Wang D, Liu T, Wang J, Wu Z (2018) N, P (S) Co-doped Mo2C/C hybrid electrocatalysts for improved hydrogen generation. Carbon 139:845–852

    Article  CAS  Google Scholar 

  59. Pan Y, Liu Y, Lin Y, Liu C (2016) Metal doping effect of the M-Co2P/Nitrogen-Doped carbon nanotubes (M= Fe, Ni, Cu) hydrogen evolution hybrid catalysts. ACS Appl Mater Interfaces 8(22):13890–13901

    Article  CAS  Google Scholar 

  60. Sultan S, Ha M, Kim DY, Tiwari JN, Myung CW, Meena A, Shin TJ, Chae KH, Kim KS (2019) Superb water splitting activity of the electrocatalyst Fe 3 Co (PO 4) 4 designed with computation aid. Nat Commun 10(1):1–9

    Article  CAS  Google Scholar 

  61. Li H, Cai C, Wang Q, Chen S, Fu J, Liu B, Hu Q, Hu K, Li H, Hu J (2022) High-performance alkaline water splitting by Ni nanoparticle-decorated Mo-Ni microrods: Enhanced ion adsorption by the local electric field. Chem Eng J. https://doi.org/10.1016/j.cej.2022.134860

    Article  Google Scholar 

  62. Shi D, Wu L, Chen Q, Jin D, Chen M, Shan Q, Wang D (2022) Interface engineering of Ni0. 85Se/Ni3S2 nanostructure for highly enhanced hydrogen evolution in alkaline solution. Int J Hydrogen Energy 47(1):305–313

    Article  CAS  Google Scholar 

  63. Cao Y, Chen Z, Ye F, Yang Y, Wang K, Wang Z, Yin L, Xu C (2022) One-step synthesis of amorphous NiCoP nanoparticles by electrodeposition as highly efficient electrocatalyst for hydrogen evolution reaction in alkaline solution. J Alloys Compd 896:163103

    Article  CAS  Google Scholar 

  64. Liu J, Zhao S, Wang C, Ma Y, He L, Liu B, Zhang Z (2022) Catkin-derived mesoporous carbon-supported molybdenum disulfide and nickel hydroxyl oxide hybrid as a bifunctional electrocatalyst for driving overall water splitting. J Colloid Interface Sci 608:1627–1637

    Article  CAS  Google Scholar 

  65. Zhang L, Xu J, Tang J, Li L, Luo J (2022) Synthesis self-supporting bulk porous NiMo@ MoS2 electrocatalyst to enhance hydrogen evolution in alkaline conditions. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2022.01.068

    Article  Google Scholar 

  66. Yu Y, Chen Q, Li J, Rao P, Li R, Du Y, Jia C, Huang W, Luo J, Deng P (2022) Progress in the development of heteroatom-doped nickel phosphates for electrocatalytic water splitting. J Colloid Interface Sci 607:1091–1102

    Article  CAS  Google Scholar 

  67. Zhang X, Fang X, Zhu K, Yuan W, Jiang T, Xue H, Tian J (2022) Fe-doping induced electronic structure reconstruction in Ni-based metal-organic framework for improved energy-saving hydrogen production via urea degradation. J Power Sour 520:230882

    Article  CAS  Google Scholar 

  68. Lu K, Sun J, Jiang C, Xu H, Dai F, Wang H (2022) Electronic structure regulation on the ultra-thin MOF-derived NiSe2/NiS2@ NC heterojunction for promoting the hydrogen evolution reaction. Mater Adv. https://doi.org/10.1039/D1MA01168E

    Article  Google Scholar 

  69. Li Z, Wu A, Xie Y, Gu Y, Yan H, Wang D, Wang S, Jin C, Wang L, Tian C (2022) Integration of heterointerface and porosity engineering to achieve efficient hydrogen evolution of 2D porous NiMoN nanobelts coupled with Ni particles. Electrochim Acta 403:139702

    Article  CAS  Google Scholar 

  70. Luo M, Liu S, Zhu W, Ye G, Wang J, He Z (2022) An electrodeposited MoS2-MoO3− x/Ni3S2 heterostructure electrocatalyst for efficient alkaline hydrogen evolution. Chem Eng J 428:131055

    Article  CAS  Google Scholar 

  71. He B, Kuang Y, Hou Z, Zhou M, Chen X (2018) Enhanced electrocatalytic hydrogen evolution activity of nickel foam by low-temperature-oxidation. J Mater Res 33(2):213–224

    Article  CAS  Google Scholar 

  72. Li J, Chu D, Baker DR, Jiang R (2022) Seamless separation of OHad and had on a Ni-O catalyst toward exceptional alkaline hydrogen evolution. J Mater Chem A. https://doi.org/10.1039/D1TA07303F

    Article  Google Scholar 

  73. Zhao L, Zhang Y, Zhao Z, Zhang Q-H, Huang L-B, Gu L, Lu G, Hu J-S, Wan L-J (2020) Steering elementary steps towards efficient alkaline hydrogen evolution via size-dependent Ni/NiO nanoscale heterosurfaces. Natl Sci Rev 7(1):27–36

    Article  CAS  Google Scholar 

  74. Evans M, Polanyi M (1938) Inertia and driving force of chemical reactions. Trans Faraday Soc 34:11–24

    Article  CAS  Google Scholar 

  75. Lu S, Hummel M, Gu Z, Gu Y, Cen Z, Wei L, Zhou Y, Zhang C, Yang C (2019) Trash to treasure: A novel chemical route to synthesis of NiO/C for hydrogen production. Int J Hydrogen Energy 44(31):16144–16153

    Article  CAS  Google Scholar 

  76. Chinnappan A, Dongxiao J, Jayathilaka W, Baskar C, Qin X, Ramakrishna S (2018) Facile synthesis of electrospun C@ NiO/Ni nanofibers as an electrocatalyst for hydrogen evolution reaction. Int J Hydrogen Energy 43(32):15217–15224

    Article  CAS  Google Scholar 

  77. Wang P, Zhang X, Wei Y, Yang P (2019) Ni/NiO nanoparticles embedded inporous graphite nanofibers towards enhanced electrocatalytic performance. Int J Hydrogen Energy 44(36):19792–19804

    Article  CAS  Google Scholar 

  78. Han H, Park S, Jang D, Kim WB (2021) N-doped carbon nanoweb-supported Ni/NiO heterostructure as hybrid catalysts for hydrogen evolution reaction in an alkaline phase. J Alloys Compd 853:157338

    Article  CAS  Google Scholar 

  79. Wang J, Zhao Z, Shen C, Liu H, Pang X, Gao M, Mu J, Cao F, Li G (2021) Ni/NiO heterostructures encapsulated in oxygen-doped graphene as multifunctional electrocatalysts for the HER, UOR and HMF oxidation reaction. Catal Sci Technol 11(7):2480–2490

    Article  CAS  Google Scholar 

  80. Xu T, Liang J, Li S, Xu Z, Yue L, Li T, Luo Y, Liu Q, Shi X, Asiri AM (2021) Recent advances in nonprecious metal oxide electrocatalysts and photocatalysts for n2 reduction reaction under ambient condition. Small Sci 1(5):2000069

    Article  CAS  Google Scholar 

  81. Zhang X, Du X (2020) Oxygen vacancies confined in nickel oxide nanoprism arrays for promoted electrocatalytic water splitting. New J Chem 44(5):1703–1706

    Article  CAS  Google Scholar 

  82. Zhang T, Wu M-Y, Yan D-Y, Mao J, Liu H, Hu W-B, Du X-W, Ling T, Qiao S-Z (2018) Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. Nano Energy 43:103–109

    Article  Google Scholar 

  83. Zhao W, Bajdich M, Carey S, Vojvodic A, Nørskov JK, Campbell CT (2016) Water dissociative adsorption on NiO (111): energetics and structure of the hydroxylated surface. ACS Catal 6(11):7377–7384

    Article  CAS  Google Scholar 

  84. Yi X, He X, Yin F, Li G, Li Z (2021) Surface strain engineered Ni-NiO for boosting hydrogen evolution reaction in alkaline media. Electrochim Acta 391:138985

    Article  CAS  Google Scholar 

  85. Adanur I, Karazehir T, Doğru Mert B, Akyol M, Ekicibil A (2022) Effect of Gd-doping in Ni/NiO core/shell magnetic nanoparticles (MNPs) on structural, magnetic and hydrogen evolution reaction. J Chem Phys. https://doi.org/10.1063/5.0078718

    Article  Google Scholar 

  86. Wang C, Li Y, Wang X, Tu J (2021) N-Doped NiO Nanosheet Arrays as Efficient Electrocatalysts for Hydrogen Evolution Reaction. J Electron Mater. https://doi.org/10.1007/s11664-021-09053-w

    Article  Google Scholar 

  87. Kou T, Chen M, Wu F, Smart TJ, Wang S, Wu Y, Zhang Y, Li S, Lall S, Zhang Z (2020) Carbon doping switching on the hydrogen adsorption activity of NiO for hydrogen evolution reaction. Nat Commun 11(1):1–10

    Article  Google Scholar 

  88. Zhang F, Ji R, Liu Y, Li Z, Liu Z, Lu S, Wang Y, Wu X, Jin H, Cai B (2020) Defect-rich engineering and F dopant Co-modulated NiO hollow dendritic skeleton as a self-supported electrode for high-current density hydrogen evolution reaction. Chem Eng J 401:126037

    Article  CAS  Google Scholar 

  89. Niu S, Jiang WJ, Tang T, Zhang Y, Li JH, Hu JS (2017) Facile and scalable synthesis of robust Ni (OH) 2 nanoplate arrays on NiAl foil as hierarchical active scaffold for highly efficient overall water splitting. Adv Sci 4(8):1700084

    Article  Google Scholar 

  90. Zhou Y, Liu H, Zhu S, Liang Y, Wu S, Li Z, Cui Z, Chang C, Yang X, Inoue A (2019) Highly efficient and self-standing nanoporous NiO/Al3Ni2 electrocatalyst for hydrogen evolution reaction. ACS Appl Energy Mater 2(11):7913–7922

    Article  CAS  Google Scholar 

  91. Chen Z-J, Cao G-X, Gan L-Y, Dai H, Xu N, Zang M-J, Dai H-B, Wu H, Wang P (2018) Highly dispersed platinum on honeycomb-like NiO@ Ni film as a synergistic electrocatalyst for the hydrogen evolution reaction. ACS Catal 8(9):8866–8872

    Article  CAS  Google Scholar 

  92. Li Y, Yin Z, Cui M, Liu X, Xiong J, Chen S, Ma T (2021) Interface engineering of transitional metal sulfide–MoS 2 heterostructure composites as effective electrocatalysts for water-splitting. J Mater Chem A 9(4):2070–2092

    Article  CAS  Google Scholar 

  93. Wang X, Liu Z, Guo Z, Ge L, Liu Z (2021) NiO–CoFe 2 O 4 electrocatalyst prepared on Ni foam by one-step hydrothermal method for efficient overall water splitting. J Mater Sci 56(14):8575–8587

    Article  CAS  Google Scholar 

  94. Yu T, Xu Q, Luo L, Liu C, Yin S (2022) Interface engineering of NiO/RuO2 heterojunction nano-sheets for robust overall water splitting at large current density. Chem Eng J 430:133117

    Article  CAS  Google Scholar 

  95. Zhang H, Wu X, Chen C, Lv C, Liu H, Lv Y, Guo J, Li J, Jia D, Tong F (2021) Spontaneous ruthenium doping in hierarchical flower-like Ni2P/NiO heterostructure nanosheets for superb alkaline hydrogen evolution. Chem Eng J 417:128069

    Article  CAS  Google Scholar 

  96. Sang Y, Cao X, Ding G, Guo Z, Xue Y, Li G, Yu R (2022) Constructing oxygen vacancy-enriched Fe 2 O 3@ NiO heterojunctions for highly efficient electrocatalytic alkaline water splitting. CrystEngComm 24(1):199–207

    Article  CAS  Google Scholar 

  97. Nady H, El-Rabiei M, Samy M, Deyab M, Abd El-Hafez GM (2021) Novel Ni–Cr-based alloys as hydrogen fuel sources through alkaline water electrolytes. Int J Hydrogen Energy 46(70):34749–34766

    Article  CAS  Google Scholar 

  98. Li X, Hao X, Abudula A, Guan G (2016) Nanostructured catalysts for electrochemical water splitting: current state and prospects. J Mater Chem A 4(31):11973–12000

    Article  CAS  Google Scholar 

  99. Zhang J, Zhou Y, Zhang S, Li S, Hu Q, Wang L, Wang L, Ma F (2018) Electrochemical preparation and post-treatment of composite porous foam NiZn alloy electrodes with high activity for hydrogen evolution. Sci Rep 8(1):1–8

    Google Scholar 

  100. Suliman MH, Adam A, Siddiqui MN, Yamani ZH, Qamar M (2019) Facile synthesis of ultrathin interconnected carbon nanosheets as a robust support for small and uniformly-dispersed iron phosphide for the hydrogen evolution reaction. Carbon 144:764–771

    Article  CAS  Google Scholar 

  101. Nairan A, Zou P, Liang C, Liu J, Wu D, Liu P, Yang C (2019) NiMo solid solution nanowire array electrodes for highly efficient hydrogen evolution reaction. Adv Funct Mater 29(44):1903747

    Article  CAS  Google Scholar 

  102. Darband GB, Aliofkhazraei M, Rouhaghdam AS, Kiani M (2019) Three-dimensional Ni-Co alloy hierarchical nanostructure as efficient non-noble-metal electrocatalyst for hydrogen evolution reaction. Appl Surf Sci 465:846–862

    Article  CAS  Google Scholar 

  103. Zhang D, Ashraf MA (2020) Electrochemical fabrication of Ni–Mo nanostars with Pt-like catalytic activity for both electrochemical hydrogen and oxygen evolution reactions. Int J Hydrogen Energy 45(55):30533–30546

    Article  CAS  Google Scholar 

  104. Jin D, Yu A, Lee Y, Kim MH, Lee C (2020) Ni x Rh 1–x bimetallic alloy nanofibers as a pH-universal electrocatalyst for the hydrogen evolution reaction: the synthetic strategy and fascinating electroactivity. J Mater Chemistry A 8(17):8629–8637

    Article  CAS  Google Scholar 

  105. Zhang B, Zhang X, Wei Y, Xia L, Pi C, Song H, Zheng Y, Gao B, Fu J, Chu PK (2019) General synthesis of NiCo alloy nanochain arrays with thin oxide coating: a highly efficient bifunctional electrocatalyst for overall water splitting. J Alloys Compd 797:1216–1223

    Article  CAS  Google Scholar 

  106. Gao D, Guo J, He H, Xiao P, Zhang Y (2022) Geometric and electronic modulation of fcc NiCo alloy by Group-VI B metal doping to accelerate hydrogen evolution reaction in acidic and alkaline media. Chem Eng J 430:133110

    Article  CAS  Google Scholar 

  107. Shen F, Jiang W, Qian G, Chen W, Zhang H, Luo L, Yin S (2020) Strongly coupled carbon encapsulated Ni-WO2 hybrids as efficient catalysts for water-to-hydrogen conversion via urea electro-oxidation. J Power Sour 458:228014

    Article  CAS  Google Scholar 

  108. Rad PJ, Aliofkhazraei M, Darband GB (2019) Ni-W nanostructure well-marked by Ni selective etching for enhanced hydrogen evolution reaction. Int J Hydrogen Energy 44(2):880–894

    Article  Google Scholar 

  109. Yang N, Chen Z, Ding D, Zhu C, Gan X, Cui Y (2021) Tungsten-Nickel Alloy Boosts Alkaline Hydrogen Evolution Reaction. J Phys Chem C 125(49):27185–27191

    Article  CAS  Google Scholar 

  110. Wang K, Xia M, Xiao T, Lei T, Yan W (2017) Metallurgically prepared NiCu alloys as cathode materials for hydrogen evolution reaction. Mater Chem Phys 186:61–66

    Article  CAS  Google Scholar 

  111. Jia Z, Yang T, Sun L, Zhao Y, Li W, Luan J, Lyu F, Zhang LC, Kruzic JJ, Kai JJ (2020) A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution. Adv Mater 32(21):2000385

    Article  CAS  Google Scholar 

  112. Chen L-W, Guo X, Shao R-Y, Yan Q-Q, Zhang L-L, Li Q-X, Liang H-W (2021) Structurally ordered intermetallic Ir3V electrocatalysts for alkaline hydrogen evolution reaction. Nano Energy 81:105636

    Article  CAS  Google Scholar 

  113. Zhang J, Wang T, Liu P, Liao Z, Liu S, Zhuang X, Chen M, Zschech E, Feng X (2017) Efficient hydrogen production on MoNi 4 electrocatalysts with fast water dissociation kinetics. Nat Commun 8(1):1–8

    Google Scholar 

  114. Allahyarzadeh M, Aliofkhazraei M, Rezvanian A, Torabinejad V, Rouhaghdam AS (2016) Ni-W electrodeposited coatings: characterization, properties and applications. Surf Coat Technol 307:978–1010

    Article  CAS  Google Scholar 

  115. Zhou Q, Hao Q, Li Y, Yu J, Xu C, Liu H, Yan S (2021) Free-standing trimodal porous NiZn intermetallic and Ni heterojunction as highly efficient hydrogen evolution electrocatalyst in the alkaline electrolyte. Nano Energy 89:106402

    Article  CAS  Google Scholar 

  116. Buccheri B, Ganci F, Patella B, Aiello G, Mandin P, Inguanta R (2021) Ni-Fe alloy nanostructured electrodes for water splitting in alkaline electrolyser. Electrochim Acta 388:138588

    Article  CAS  Google Scholar 

  117. Ganci F, Cusumano V, Livreri P, Aiello G, Sunseri C, Inguanta R (2021) Nanostructured Ni–Co alloy electrodes for both hydrogen and oxygen evolution reaction in alkaline electrolyzer. Int J Hydrogen Energy 46(16):10082–10092

    Article  CAS  Google Scholar 

  118. Ganci F, Buccheri B, Patella B, Cannata E, Aiello G, Mandin P, Inguanta R (2021) Electrodeposited nickel–zinc alloy nanostructured electrodes for alkaline electrolyzer. Int J Hydrogen Energy. https://doi.org/10.1016/j.electacta.2021.138588

    Article  Google Scholar 

  119. Li F, Wang S, Gu L, Chang X, Lin H, Wu K (2022) One-step dealloying of Ni-Y-Al metallic glass for fabrication of nanoporous hybrid toward efficient water splitting reaction. Ionics. https://doi.org/10.1007/s11581-021-04434-x

    Article  Google Scholar 

  120. Arabi M, Ghaffarinejad A, Darband GB (2022) Electrodeposition of nanoporous nickel selenide on graphite rod as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. J Electroanal Chem. https://doi.org/10.1016/j.jelechem.2022.116066

    Article  Google Scholar 

  121. Wang J, Shao H, Ren S, Hu A, Li M (2021) Fabrication of porous Ni-Co catalytic electrode with high performance in hydrogen evolution reaction. Appl Surf Sci 539:148045

    Article  CAS  Google Scholar 

  122. Xu J, Li L, Tang J, Dai L, Li X, Ye Z, Luo J (2021) Powder metallurgy synthesis of porous NiMo alloys as efficient electrocatalysts to enhance the hydrogen evolution reaction. J Alloys Compd 865:158901

    Article  CAS  Google Scholar 

  123. You B, Tang MT, Tsai C, Abild-Pedersen F, Zheng X, Li H (2019) Enhancing electrocatalytic water splitting by strain engineering. Adv Mater 31(17):1807001

    Article  Google Scholar 

  124. Kim K, Tiwari AP, Hyun G, Yoon Y, Kim H, Park JY, An K-S, Jeon S (2021) Continuous 3D-nanopatterned Ni–Mo solid solution as a free-standing electrocatalyst for the hydrogen evolution reaction in alkaline medium. J Mater Chem A 9(12):7767–7773

    Article  CAS  Google Scholar 

  125. Zhou B, Hu H, Jiao Z, Tang Y, Wan P, Yuan Q, Hu Q, Yang XJ (2021) Thermal oxidation–electroreduction modified 3D NiCu for efficient alkaline hydrogen evolution reaction. Int J Hydrogen Energy 46(43):22292–22302

    Article  CAS  Google Scholar 

  126. Lv C, Wang X, Gao L, Wang A, Wang S, Wang R, Ning X, Li Y, Boukhvalov DW, Huang Z (2020) Triple functions of Ni (OH) 2 on the surface of Wn nanowires remarkably promoting electrocatalytic activity in full water splitting. ACS Catal 10(22):13323–13333

    Article  CAS  Google Scholar 

  127. Ahmed M, Lakhan MN, Shar AH, Zehra I, Hanan A, Ali I, Latif MA, Chand K, Ali A, Wang J (2022) Electrochemical performance of grown layer of Ni (OH) 2 on nickel foam and treatment with phosphide and selenide for efficient water splitting. J Indian Chem Soc 99(1):100281

    Article  CAS  Google Scholar 

  128. Song C, Zhou X, Yoo SJ, Wang Y, Zhang Z, Zhang X, Kim JG, Zhang W (2021) Highly electrochemically-active surface area of Ni (OH) 2 with petal structure in situ grown on conductive Ni foam for efficient hydrogen evolution reaction. Surf Interface Anal 53(12):1020–1026

    Article  CAS  Google Scholar 

  129. Zhang J, Wang T, Liu P, Liao Z, Liu S, Zhuang X, Chen M, Zschech E, Feng X (2017) Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat Commun 8(1):15437. https://doi.org/10.1038/ncomms15437

    Article  CAS  Google Scholar 

  130. Hu J, Li S, Li Y, Wang J, Du Y, Li Z, Han X, Sun J, Xu P (2020) A crystalline–amorphous Ni–Ni (OH) 2 core–shell catalyst for the alkaline hydrogen evolution reaction. J Mater Chem A 8(44):23323–23329

    Article  CAS  Google Scholar 

  131. Yang C, Zhou L, Yan T, Bian Y, Hu Y, Wang C, Zhang Y, Shi Y, Wang D, Zhen Y (2022) Synergistic mechanism of Ni (OH) 2/NiMoS heterostructure electrocatalyst with crystalline/amorphous interfaces for efficient hydrogen evolution over all pH ranges. J Colloid Interface Sci 606:1004–1013

    Article  CAS  Google Scholar 

  132. Liu T, Gao W, Wang Q, Dou M, Zhang Z, Wang F (2020) Selective loading of atomic platinum on a RuCeOx support enables stable hydrogen evolution at high current densities. Angew Chem Int Ed 59(46):20423–20427

    Article  CAS  Google Scholar 

  133. Zhang B, Liu J, Wang J, Ruan Y, Ji X, Xu K, Chen C, Wan H, Miao L, Jiang J (2017) Interface engineering: the Ni (OH) 2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy 37:74–80

    Article  CAS  Google Scholar 

  134. Anantharaj S, Noda S (2020) Amorphous catalysts and electrochemical water splitting: an untold story of harmony. Small 16(2):1905779

    Article  CAS  Google Scholar 

  135. Zhao F, Liu H, Zhu H, Jiang X, Zhu L, Li W, Chen H (2021) Amorphous/amorphous Ni–P/Ni (OH) 2 heterostructure nanotubes for an efficient alkaline hydrogen evolution reaction. J Mater Chem A 9(16):10169–10179

    Article  CAS  Google Scholar 

  136. Zhang J-W, Lv X-W, Ren T-Z, Wang Z, Bandosz TJ, Yuan Z-Y (2020) Engineering heterostructured Ni@ Ni (OH) 2 core-shell nanomaterials for synergistically enhanced water electrolysis. Green Energy & Environment

  137. Fu HC, Wang XH, Chen XH, Zhang Q, Li NB, Luo HQ (2022) Interfacial engineering of Ni (OH) 2 on W2C for remarkable alkaline hydrogen production. Appl Catal B 301:120818

    Article  CAS  Google Scholar 

  138. Lai W, Ge L, Li H, Deng Y, Xu B, Ouyang B, Kan E (2021) In situ Raman spectroscopic study towards the growth and excellent HER catalysis of Ni/Ni (OH) 2 heterostructure. Int J Hydrogen Energy 46(53):26861–26872

    Article  CAS  Google Scholar 

  139. Lu S, Zhao B, Chen M, Wang L, Fu X-Z, Luo J-L (2021) Electrodeposited porous spherical Ni (OH) 2@ Ni on carbon paper for high-efficiency hydrogen evolution. Int J Hydrogen Energy 46(2):1540–1547

    Article  CAS  Google Scholar 

  140. Zhu D, Liu J, Zhao Y, Zheng Y, Qiao SZ (2019) Engineering 2D metal–organic framework/MoS2 interface for enhanced alkaline hydrogen evolution. Small 15(14):1805511

    Article  Google Scholar 

  141. Zhong W, Li W, Yang C, Wu J, Zhao R, Idrees M, Xiang H, Zhang Q, Li X (2021) Interfacial electron rearrangement: Ni activated Ni (OH) 2 for efficient hydrogen evolution. J Energy Chem 61:236–242

    Article  CAS  Google Scholar 

  142. Wang H, Li W, Zhu Z, Wang Y, Li P, Luo H, Xiao Z, Wang J, Tian Q, Xue Y (2019) Fabrication of an N-doped mesoporous bio-carbon electrocatalyst efficient in Zn–air batteries by an in situ gas-foaming strategy. Chem Commun 55(100):15117–15120

    Article  CAS  Google Scholar 

  143. Xu T, Wang J, Wang M, Xue Y, Liu J, Cai N, Chen W, Huang F, Li X, Yu F (2021) Ni (OH) 2-Ag hybrid nanosheets array with ultralow Ag loading as highly efficient and stable electrocatalysts for hydrogen evolution reaction. New J Chem. https://doi.org/10.1039/D1NJ02621F

    Article  Google Scholar 

  144. Huang J, Hong W, Liu W (2022) Molybdenum carbide nanosheets decorated with Ni (OH) 2 nanoparticles toward efficient hydrogen evolution reaction in alkaline media. Appl Surf Sci 579:152152

    Article  CAS  Google Scholar 

  145. Yao Z, Wang J, Wang Y, Xie T, Li C, Jiang Z (2021) Boosting electrocatalytic activity toward alkaline hydrogen evolution by strongly coupled ternary Ni3S4/Ni/Ni (OH) 2 hybrid. Electrochim Acta 382:138342

    Article  CAS  Google Scholar 

  146. Wang G, Li Y, Xu L, Jin Z, Wang Y (2020) Facile synthesis of difunctional NiV LDH@ ZIF-67 pn junction: serve as prominent photocatalyst for hydrogen evolution and supercapacitor electrode as well. Renewable Energy 162:535–549

    Article  CAS  Google Scholar 

  147. Tian Y, Huang A, Wang Z, Wang M, Wu Q, Shen Y, Zhu Q, Fu Y, Wen M (2021) Two-dimensional hetero-nanostructured electrocatalyst of Ni/NiFe-layered double oxide for highly efficient hydrogen evolution reaction in alkaline medium. Chem Eng J 426:131827

    Article  CAS  Google Scholar 

  148. Sun H, Zhang W, Li J-G, Li Z, Ao X, Xue K-H, Ostrikov KK, Tang J, Wang C (2021) Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis. Appl Catal B 284:119740

    Article  CAS  Google Scholar 

  149. Gultom NS, Abdullah H, Hsu C-N, Kuo D-H (2021) Activating nickel iron layer double hydroxide for alkaline hydrogen evolution reaction and overall water splitting by electrodepositing nickel hydroxide. Chem Eng J 419:129608

    Article  CAS  Google Scholar 

  150. Lu Y, Liu C, Xing Y, Xu Q, Hossain AMS, Jiang D, Li D, Zhu J (2021) Synergistically integrated Co9S8@ NiFe-layered double hydroxide core-branch hierarchical architectures as efficient bifunctional electrocatalyst for water splitting. J Coll Interface Sci 604:680–690

    Article  CAS  Google Scholar 

  151. Hu J, Zhu S, Liang Y, Wu S, Li Z, Luo S, Cui Z (2021) Self-supported Ni3Se2@ NiFe layered double hydroxide bifunctional electrocatalyst for overall water splitting. J Coll Interface Sci 587:79–89

    Article  CAS  Google Scholar 

  152. Liu H, Peng X, Liu X (2018) Single-Atom Catalysts for the Hydrogen Evolution Reaction. ChemElectroChem 5(20):2963–2974

    Article  CAS  Google Scholar 

  153. Zhang Z, Feng C, Liu C, Zuo M, Qin L, Yan X, Xing Y, Li H, Si R, Zhou S (2020) Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nat Commun 11(1):1–8

    Google Scholar 

  154. Xu H, Zhao Y, Wang Q, He G, Chen H (2022) Supports promote single-atom catalysts toward advanced electrocatalysis. Coord Chem Rev 451:214261

    Article  CAS  Google Scholar 

  155. Jiang K, Liu B, Luo M, Ning S, Peng M, Zhao Y, Lu Y-R, Chan T-S, de Groot FM, Tan Y (2019) Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat Commun 10(1):1–9

    Google Scholar 

  156. Hou CC, Zou L, Wang Y, Xu Q (2020) MOF-mediated fabrication of a porous 3D superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles for efficient electrocatalysis and zinc-air batteries. Angew Chem 132(48):21544–21550

    Article  Google Scholar 

  157. Chen M, Wang Z, Ge X, Wang Z, Fujisawa K, Xia J, Zeng Q, Li K, Zhang T, Zhang Q (2020) Controlled fragmentation of single-atom-thick polycrystalline graphene. Matter 2(3):666–679

    Article  Google Scholar 

  158. Ling C, Shi L, Ouyang Y, Zeng XC, Wang J (2017) Nanosheet supported single-metal atom bifunctional catalyst for overall water splitting. Nano Lett 17(8):5133–5139

    Article  CAS  Google Scholar 

  159. Chen Y, Ji S, Chen C, Peng Q, Wang D, Li Y (2018) Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2(7):1242–1264

    Article  CAS  Google Scholar 

  160. Wang Y, Wang D, Li Y (2021) Rational design of single-atom site electrocatalysts: from theoretical understandings to practical applications. Adv Mater 33(34):2008151

    Article  CAS  Google Scholar 

  161. Sun Z, Gao Z, Xu X, Tao J, Guan L (2022) Low-cost single-atom transition metals on two-dimensional SnO nanosheets for efficient hydrogen evolution catalysis in all pH-range. Appl Surf Sci 578:152021

    Article  CAS  Google Scholar 

  162. Wang S, Wang Z, Yan R, Guo Y, Chen H, Lü W, Zhang Y, Liu Z, Lü Z (2022) A facile bottom-up strategy based on combustion-reduction toward monolithic micron/nanoporous nickel: an efficient electrode material for hydrogen evolution reaction and supercapacitor. Electrochim Acta. https://doi.org/10.1016/j.electacta.2022.139922

    Article  Google Scholar 

  163. Wang Q, Zhao ZL, Dong S, He D, Lawrence MJ, Han S, Cai C, Xiang S, Rodriguez P, Xiang B (2018) Design of active nickel single-atom decorated MoS2 as a pH-universal catalyst for hydrogen evolution reaction. Nano Energy 53:458–467

    Article  CAS  Google Scholar 

  164. Zhang X, Liu W-X, Zhou Y-W, Meng Z-D, Luo L, Liu S-Q (2021) Single-atom nickel anchored on surface of molybdenum disulfide for efficient hydrogen evolution. J Electroanal Chem 894:115359

    Article  CAS  Google Scholar 

  165. Bi H, Zhang L, Wang Z, Zhou G (2022) Identification of active sites available for hydrogen evolution of single-Atom Ni1/TiO2 catalysts. Appl Surf Sci 579:152139

    Article  CAS  Google Scholar 

  166. Gutić SJ, Šabanović M, Metarapi D, Pašti IA, Korać F, Mentus SV (2019) Electrochemically synthesized Ni@ reduced graphene oxide composite catalysts for hydrogen evolution in alkaline media–the effects of graphene oxide support. Int J Electrochem Sci 14:8532–8543

    Article  Google Scholar 

  167. Wang L, Li Y, Xia M, Li Z, Chen Z, Ma Z, Qin X, Shao G (2017) Ni nanoparticles supported on graphene layers: an excellent 3D electrode for hydrogen evolution reaction in alkaline solution. J Power Sour 347:220–228

    Article  CAS  Google Scholar 

  168. Wu M, Liao J, Yu L, Lv R, Li P, Sun W, Tan R, Duan X, Zhang L, Li F (2020) 2020 Roadmap on carbon materials for energy storage and conversion. Chem Asian J 15(7):995–1013

    Article  CAS  Google Scholar 

  169. Li P, Zhao G, Cui P, Cheng N, Lao M, Xu X, Dou SX, Sun W (2021) Nickel single atom-decorated carbon nanosheets as multifunctional electrocatalyst supports toward efficient alkaline hydrogen evolution. Nano Energy 83:105850

    Article  CAS  Google Scholar 

  170. Hong S, Song N, Jiang E, Sun J, Chen G, Li C, Liu Y, Dong H (2022) Nickel supported on Nitrogen-doped biomass carbon fiber fabricated via in-situ template technology for pH-universal electrocatalytic hydrogen evolution. J Colloid Interface Sci 608:1441–1448

    Article  CAS  Google Scholar 

  171. Tong R, Sun Z, Zhang F, Wang X, Xu J, Shi X, Wang S, Pan H (2018) N and V coincorporated Ni nanosheets for enhanced hydrogen evolution reaction. ACS Sustain Chem Eng 6(12):16525–16531

    Article  CAS  Google Scholar 

  172. Luo M, Guo S (2017) Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat Rev Mater 2(11):1–13

    Article  Google Scholar 

  173. Zhang X, Li X, Pan Z, Lai Y, Lu Y, Wang Y, Song S (2021) Boosting hydrogen evolution electrocatalysis through defect engineering: a strategy of heat and cool shock. Chem Eng J 426:131524

    Article  CAS  Google Scholar 

  174. Xing Z, Gan L, Wang J, Yang X (2017) Experimental and theoretical insights into sustained water splitting with an electrodeposited nanoporous nickel hydroxide@ nickel film as an electrocatalyst. J Mater Chemistry A 5(17):7744–7748

    Article  CAS  Google Scholar 

  175. Liu Y, Wang J, Tian Q, Liu M, Wang X, Li P, Li W, Cai N, Chen W, Yu F (2019) Papillae-like morphology of Ni/Ni (OH) 2 hybrid crystals by stepwise electrodeposition for synergistically improved HER. CrystEngComm 21(22):3431–3438

    Article  CAS  Google Scholar 

  176. Cai Z, Bu X, Wang P, Su W, Wei R, Ho JC, Yang J, Wang X (2019) Simple and cost effective fabrication of 3D porous core–shell Ni nanochains@ NiFe layered double hydroxide nanosheet bifunctional electrocatalysts for overall water splitting. J Mater Chem A 7(38):21722–21729

    Article  CAS  Google Scholar 

  177. Zhang B, Zhu C, Wu Z, Stavitski E, Lui YH, Kim T-H, Liu H, Huang L, Luan X, Zhou L (2019) Integrating Rh species with NiFe-layered double hydroxide for overall water splitting. Nano Lett 20(1):136–144

    Article  Google Scholar 

  178. Li D, Chen X, Lv Y, Zhang G, Huang Y, Liu W, Li Y, Chen R, Nuckolls C, Ni H (2020) An effective hybrid electrocatalyst for the alkaline HER: Highly dispersed Pt sites immobilized by a functionalized NiRu-hydroxide. Appl Catal B 269:118824

    Article  CAS  Google Scholar 

  179. Liu Q, Yan Z, Gao J, Wang E, Sun G (2020) Optimizing platinum location on nickel hydroxide nanosheets to accelerate the hydrogen evolution reaction. ACS Appl Mater Interfaces 12(22):24683–24692

    Article  CAS  Google Scholar 

  180. Zhang Z, Liu S, Xiao F, Wang S (2017) Facile synthesis of heterostructured nickel/nickel oxide wrapped carbon fiber: flexible bifunctional gas-evolving electrode for highly efficient overall water splitting. ACS Sustain Chem Eng 5(1):529–536

    Article  CAS  Google Scholar 

  181. Chen H, Ge D, Chen J, Li R, Zhang X, Yu T, Wang Y, Song S (2020) In situ surface reconstruction synthesis of a nickel oxide/nickel heterostructural film for efficient hydrogen evolution reaction. Chem Commun 56(72):10529–10532

    Article  CAS  Google Scholar 

  182. Zhang H, Guo H, Ren J, Jin X, Li X, Song R (2021) Synergistic engineering of morphology and electronic structure in constructing metal-organic framework-derived Ru doped cobalt-nickel oxide heterostructure towards efficient alkaline hydrogen evolution reaction. Chem Eng J 426:131300

    Article  CAS  Google Scholar 

  183. Wang J, Mao S, Liu Z, Wei Z, Wang H, Chen Y, Wang Y (2017) Dominating role of Ni0 on the interface of Ni/NiO for enhanced hydrogen evolution reaction. ACS Appl Mater Interfaces 9(8):7139–7147

    Article  CAS  Google Scholar 

  184. Xie Y, Wang X, Tang K, Li Q, Yan C (2018) Blending Fe3O4 into a Ni/NiO composite for efficient and stable bifunctional electrocatalyst. Electrochim Acta 264:225–232

    Article  CAS  Google Scholar 

  185. Wang J, Xin S, Xiao Y, Zhang Z, Li Z, Zhang W, Li C, Bao R, Peng J, Yi J (2022) Manipulating the water dissociation electrocatalytic sites of bimetallic ni-based alloy for highly-efficient alkaline hydrogen evolution. Angew Chem Int Ed. https://doi.org/10.1002/anie.202202518

    Article  Google Scholar 

  186. Zhou Y, Luo M, Zhang W, Zhang Z, Meng X, Shen X, Liu H, Zhou M, Zeng X (2019) Topological formation of a Mo–Ni-based hollow structure as a highly efficient electrocatalyst for the hydrogen evolution reaction in alkaline solutions. ACS Appl Mater Interfaces 11(24):21998–22004

    Article  CAS  Google Scholar 

  187. Gao M, Yang C, Zhang Q, Yu Y, Hua Y, Li Y, Dong P (2016) Electrochemical fabrication of porous Ni-Cu alloy nanosheets with high catalytic activity for hydrogen evolution. Electrochim Acta 215:609–616

    Article  CAS  Google Scholar 

  188. Hatami E, Toghraei A, Darband GB (2021) Electrodeposition of Ni–Fe micro/nano urchin-like structure as an efficient electrocatalyst for overall water splitting. Int J Hydrogen Energy 46(14):9394–9405

    Article  CAS  Google Scholar 

  189. Fan L, Liu PF, Yan X, Gu L, Yang ZZ, Yang HG, Qiu S, Yao X (2016) Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat Commun 7(1):1–7

    Article  Google Scholar 

  190. Zhang L, Jia Y, Gao G, Yan X, Chen N, Chen J, Soo MT, Wood B, Yang D, Du A (2018) Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 4(2):285–297

    Article  CAS  Google Scholar 

  191. Guo J, Shang W, Hu J, Xin C, Cheng X, Wei J, Zhu C, Liu W, Shi Y (2022) Synergistically enhanced single-atom nickel catalysis for alkaline hydrogen evolution reaction. ACS Appl Mater Interfaces 14(26):29822–29831

    Article  CAS  Google Scholar 

  192. Qiu HJ, Ito Y, Cong W, Tan Y, Liu P, Hirata A, Fujita T, Tang Z, Chen M (2015) Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew Chem Int Ed 54(47):14031–14035

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Korea Institute of Science and Technology (KIST) Institutional Program—2022 KIST School Partnership Project Program under Project No. 2Z06810. This research was also funded by Higher Education Commission (HEC) Islamabad, Pakistan, under the NRPU Project No. 7600/KPK/NRPU/R&D/HEC/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dang Le Tri Nguyen.

Ethics declarations

Conflict of interest

The authors declare that this work has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, N.A., Rahman, G., Nguyen, T.M. et al. Recent Development of Nanostructured Nickel Metal-Based Electrocatalysts for Hydrogen Evolution Reaction: A Review. Top Catal 66, 149–181 (2023). https://doi.org/10.1007/s11244-022-01706-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01706-2

Keywords

Navigation