Skip to main content

Advertisement

Log in

N-Doped NiO Nanosheet Arrays as Efficient Electrocatalysts for Hydrogen Evolution Reaction

  • Topical Collection: Carbon-Based Materials for Energy Storage
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Exploration of cost-effective high-performance non-noble-metal-based electrocatalysts for the hydrogen evolution reaction (HER) has attracted huge attention. In this work, a nitrogen doping method is adopted to construct self-supported, N-doped NiO nanosheet arrays (N-NiO) as an effective HER electrocatalyst. The N-NiO nanosheet arrays are firmly anchored on a nickel foam substrate, forming a free-standing integrated electrode with an open nanostructure. By virtue of its larger electrochemical active surface areas and better electron conductivity, the N-NiO electrode has admirable electrocatalytic HER performance with a low overpotential (154 mV at a current density of 10 mA cm−2) and a low Tafel slope of 90 mV dec−1. In addition, the N-NiO nanosheet arrays exhibit relatively stable electrocatalytic activity after a 10 h continuous test in an alkaline solution. Our reported rational design principle and optimization strategy provide a powerful way to construct advanced transition-metal-based electrocatalysts for the HER.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.

Similar content being viewed by others

References

  1. X. Liang, Y. Li, H. Fan, S. Deng, X. Zhao, M. Chen, G. Pan, Q. Xiong, and X. Xia, Nanotechnology 30, 484001 (2019).

    Article  CAS  Google Scholar 

  2. K. Zhang, X. Xia, S. Deng, Y. Zhong, D. Xie, G. Pan, J. Wu, Q. Liu, X. Wang, and J. Tu, Nano-Micro Lett. 11, 21 (2019).

    Article  CAS  Google Scholar 

  3. S. Deng, K. Zhang, D. Xie, Y. Zhang, Y. Zhang, Y. Wang, J. Wu, X. Wang, H.J. Fan, X. Xia, and J. Tu, Nano-Micro Lett. 13, 16 (2020).

    Article  Google Scholar 

  4. W.X. Zhang, L. Cui, and J.Q. Liu, J. Alloys Compd. 821, 21153542 (2020).

    Google Scholar 

  5. D.Q. Gao, B.R. Xia, Y.Y. Wang, W. Xiao, P.X. Xi, D.S. Xue, and J. Ding, Small 14, 1704150 (2018).

    Article  CAS  Google Scholar 

  6. C.Y. Jian, Q. Cai, W.T. Hong, J. Li, and W. Liu, Small 14, 1703798 (2018).

    Article  CAS  Google Scholar 

  7. S. Deng, C. Ai, M. Luo, B. Liu, Y. Zhang, Y. Li, S. Lin, G. Pan, Q. Xiong, Q. Liu, X. Wang, X. Xia, and J. Tu, Small 15, 1901796 (2019).

    Article  CAS  Google Scholar 

  8. X.M. Xu, Y.B. Chen, W. Zhou, Z.H. Zhu, C. Su, M.L. Liu, and Z.P. Shao, Adv. Mater. 28, 6442 (2016).

    Article  CAS  Google Scholar 

  9. J. Jiang, M. Gao, W. Sheng, and Y. Yan, Angew. Chem. Int. Ed. 55, 15240 (2016).

    Article  CAS  Google Scholar 

  10. J. Zhang, T. Wang, P. Liu, S. Liu, R. Dong, X. Zhuang, M. Chen, and X. Feng, Energy Environ. Sci. 9, 2789 (2016).

    Article  CAS  Google Scholar 

  11. P.M. Csernica, J.R. Mckone, C.R. Mulzer, W.R. Dichtel, H.D. Abruna, and F.J. Disalvo, ACS Catal. 7, 3375 (2017).

    Article  CAS  Google Scholar 

  12. S. Jeoung, B. Seo, J.M. Hwang, S.H. Joob, and H.R. Moon, Mater. Chem. Front. 1, 973 (2017).

    Article  CAS  Google Scholar 

  13. D. Yoon, J. Lee, B. Seo, B. Kim, H. Baik, S.H. Joo, and K. Lee, Small 13, 1700052 (2017).

    Article  CAS  Google Scholar 

  14. B.Q. Wang, J. Shang, C. Guo, J.Z. Zhang, F.N. Zhu, A.J. Han, and J.F. Liu, Small 15, 1804761 (2019).

    Article  CAS  Google Scholar 

  15. Y.H. Lee, X.Q. Zhang, W.J. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T.W. Wang, C.S. Chang, L.J. Li, and T.W. Lin, Adv. Mater. 24, 2320 (2012).

    Article  CAS  Google Scholar 

  16. R.Q. Ye, P. Del Angel-Vicente, Y.Y. Liu, M.J. Arellano-Jimenez, Z.W. Peng, T. Wang, Y.L. Li, B.I. Yakobson, S.H. Wei, M.J. Yacaman, and J.M. Tour, Adv. Mater. 28, 1427 (2016).

    Article  CAS  Google Scholar 

  17. Y. Surendranath, M.W. Kanan, and D.G. Nocera, J. Am. Chem. Soc. 132, 16501 (2010).

    Article  CAS  Google Scholar 

  18. C.-Z. Yuan, Y.-F. Jiang, Z. Wang, X. Xie, Z.-K. Yang, A. Bin Yousaf, and A.-W. Xu, J. Mater. Chem. A 4, 8155 (2016).

    Article  CAS  Google Scholar 

  19. C.R. Zhu, D.Q. Gao, J. Ding, D.L. Chao, and J. Wang, Chem. Soc. Rev. 47, 4332 (2018).

    Article  CAS  Google Scholar 

  20. S. Deng, Y. Zhong, Y. Zeng, Y. Wang, Z. Yao, F. Yang, S. Lin, X. Wang, X. Lu, X. Xia, and J. Tu, Adv. Mater. 29, 1700748 (2017).

    Article  CAS  Google Scholar 

  21. X. Jia, Y. Zhao, G. Chen, L. Shang, R. Shi, X. Kang, G.I.N. Waterhouse, L.-Z. Wu, C.-H. Tung, and T. Zhang, Adv. Energy Mater. 6, 1502585 (2016).

    Article  CAS  Google Scholar 

  22. M.-Y. Wu, P.-F. Da, T. Zhang, J. Mao, H. Liu, and T. Ling, ACS Appl. Mater. Interfaces 10, 17896 (2018).

    Article  CAS  Google Scholar 

  23. T. Zhang, M.-Y. Wu, D.-Y. Yan, J. Mao, H. Liu, W.-B. Hu, X.-W. Du, T. Ling, and S.-Z. Qiao, Nano Energy 43, 103 (2018).

    Article  CAS  Google Scholar 

  24. M. Gong, W. Zhou, M.-C. Tsai, J. Zhou, M. Guan, M.-C. Lin, B. Zhang, Y. Hu, D.-Y. Wang, J. Yang, S.J. Pennycook, B.-J. Hwang, and H. Dai, Nat. Commun. 5, 4695 (2014).

    Article  CAS  Google Scholar 

  25. H.H. El-Maghrabi, A.A. Nada, S. Roualdes, and M.F. Bekheet, Int. J. Hydrog. Energy 45, 32000 (2020).

    Article  CAS  Google Scholar 

  26. H. Han, S. Park, D. Jang, and W.B. Kim, J. Alloys Compd. 853, 157338 (2021).

    Article  CAS  Google Scholar 

  27. M. Chu, L. Wang, X. Li, M. Hou, N. Li, Y. Dong, X. Li, Z. Xie, Y. Lin, W. Cai, and C. Zhang, Electrochim. Acta 264, 284 (2018).

    Article  CAS  Google Scholar 

  28. S. Deng, F. Yang, Q. Zhang, Y. Zhong, Y. Zeng, S. Lin, X. Wang, X. Lu, C.-Z. Wang, L. Gu, X. Xia, and J. Tu, Adv. Mater. 30, 1802223 (2018).

    Article  CAS  Google Scholar 

  29. K. Zhang, X. Xia, S. Deng, D. Xie, Y. Lu, Y. Wang, J. Wu, X. Wang, and J. Tu, J. Energy Chem. 37, 13 (2019).

    Article  Google Scholar 

  30. N. Bala, H.K. Singh, S. Verma, and S. Rath, Phys. Rev. B 102, 024423 (2020).

    Article  CAS  Google Scholar 

  31. A.Y. Faid, A.O. Barnett, F. Seland, and S. Sunde, Electrochim. Acta 361, 137040 (2020).

    Article  CAS  Google Scholar 

  32. A. Sunny, and K. Balasubramanian, Phys. Chem. Chem. Phys. 22, 22815 (2020).

    Article  CAS  Google Scholar 

  33. A.V. Fedorov, R.G. Kukushkin, P.M. Yeletsky, O.A. Bulavchenko, Y.A. Chesalov, and V.A. Yakovlev, J. Alloys Compd. 844, 156135 (2020).

    Article  CAS  Google Scholar 

  34. A.P. Grosvenor, M.C. Biesinger, R.S.C. Smart, and N.S. Mcintyre, Surf. Sci. 600, 1771 (2006).

    Article  CAS  Google Scholar 

  35. M.A. Peck, and M.A. Langell, Chem. Mater. 24, 4483 (2012).

    Article  CAS  Google Scholar 

  36. K. Sakamoto, F. Hayashi, K. Sato, M. Hirano, and N. Ohtsu, Appl. Surf. Sci. 526, 146729 (2020).

    Article  CAS  Google Scholar 

  37. L. Van Hoang, T. Huynh Ngoc, S.H. Hur, J.H. Han, and W. Lee, Nanomaterials 7, 313 (2017).

    Article  CAS  Google Scholar 

  38. R. Li, D. Zhou, J. Luo, W. Xu, J. Li, S. Li, P. Cheng, and D. Yuan, J. Power Sources 341, 250 (2017).

    Article  CAS  Google Scholar 

  39. C. Zhang, S. Bhoyate, P.K. Kahol, K. Siam, T.P. Poudel, S.R. Mishra, F. Perez, A. Gupta, G. Gupta, and R.K. Gupta, Chemnanomat 4, 1240 (2018).

    Article  CAS  Google Scholar 

  40. N. Li, X. Liu, G.-D. Li, Y. Wu, R. Gao, and X. Zou, Int. J. Hydrog. Energy 42, 9914 (2017).

    Article  CAS  Google Scholar 

  41. B. Owens-Baird, Y.V. Kolen’ko, and K. Kovnir, Chem. Eur. J. 24, 7298 (2018).

    Article  CAS  Google Scholar 

  42. X. Li, X. Hao, A. Abudula, and G. Guan, J. Mater. Chem. A 4, 11973 (2016).

    Article  CAS  Google Scholar 

  43. A.B. Laursen, S. Kegnaes, S. Dahl, and I. Chorkendorff, Energy Environ. Sci. 5, 5577 (2012).

    Article  CAS  Google Scholar 

  44. D. Merki, and X. Hu, Energy Environ. Sci. 4, 3878 (2011).

    Article  CAS  Google Scholar 

  45. D. Merki, H. Vrubel, L. Rovelli, S. Fierro, and X. Hu, Chem. Sci. 3, 2515 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

C.H. Wang acknowledges the support by Yu Zhong. This work is supported by China Postdoctoral Science Foundation (Grant No. 2020M671713).

Author information

Authors and Affiliations

Authors

Contributions

CW: literature research, methodology, experiment operation, data analysis and plotting, visualization, writing-original draft, writing-review and editing. YL: supervision, experimental design, guidance of data analysis, writing-review and editing, project administration. XW: resources. JT: resources.

Corresponding authors

Correspondence to Yahao Li or Jiangping Tu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 306 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Li, Y., Wang, X. et al. N-Doped NiO Nanosheet Arrays as Efficient Electrocatalysts for Hydrogen Evolution Reaction. J. Electron. Mater. 50, 5072–5080 (2021). https://doi.org/10.1007/s11664-021-09053-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09053-w

Keywords

Navigation