Skip to main content
Log in

Synthesis and characterization of highly dispersed bimetallic Au-Rh nanoparticles supported on titanate nanotubes for CO oxidation reaction at low temperature

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Low-temperature CO oxidation was carried out by using rhodium incorporated into titanate nanotubes (Rh/NTs) prepared by the sol-gel and hydrothermal methods; otherwise, gold nanoparticles were deposited homogeneously onto the Rh/NT surface through the deposition-precipitation with urea (DPU) method. The Au-Rh/NT sample exhibited high metal dispersion (55%), outstanding CO oxidation at low temperature, and better resistance to deactivation than the monometallic Rh/NT and Au/NT samples. The characterization of bimetallic samples, with particle sizes from 1 to 3 nm, revealed the remarkable presence of interacting Au and Rh species in metallic state. In this way, Au0 and Rh0 were answerable for the higher catalytic activity observed in the bimetallic samples. The interaction between Au and Rh in the nanoparticles of Au-Rh/NT promoted a synergistic effect on the CO oxidation reaction, explained by the creation of new CO adsorption sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Not applicable

References

  • Camposeco R, Castillo S, Mejía-Centeno I, Navarrete J, Nava N, Rodríguez-González V (2017) Synthesis of protonated titanate nanotubes tailored by the washing step: effect upon acid properties and photocatalytic activity. J Photochem Photobiol A 341:87–96

    Article  CAS  Google Scholar 

  • Camposeco R, Castillo S, Hinojosa-Reyes M, Nava N, Zanella R (2019a) Efficient CO (carbon monoxide) oxidation using gold catalysts supported on WO3/titanate protonated nanotubes. Mater Res Bull 115:247–256

  • Camposeco R, Castillo S, Hinojosa-Reyes M, Zanella R, López-Curiel J, Fuentes AG, Mejía-Centeno I (2019b) Active TiO2-nanostructured surfaces for CO oxidation on Rh model catalysts at low-temperature. Catal Lett 149(6):1565–1578

  • Cárdenas-Lizana F, Gómez-Quero S, Perret N, Keane MA (2011) Gold catalysis at the gas-solid interface: role of the support in determining activity and selectivity in the hydrogenation of m-dinitrobenzene. Catal Sci Technol 1:652–661

    Article  CAS  Google Scholar 

  • Chen P, Khetan A, Yang F, Migunov V, Weide P, Stürmer SP, Guo P, Kähler K, Xia W, Mayer J (2017) Experimental and theoretical understanding of nitrogen-doping-induced strong metal–support interactions in Pd/TiO2 catalysts for nitrobenzene hydrogenation. ACS Catal 7(2):1197–1206

    Article  CAS  Google Scholar 

  • Chen Y, Su P, Liu X, Liu H, Zhu B, Zhang S, Huang W (2018) Titanate nanotube-supported Au–Rh bimetallic catalysts: characterization and their catalytic performances in hydroformylation of vinyl acetate. Catal 8:420–434

    Article  CAS  Google Scholar 

  • Chiarello GLH, Aguirre M, Selli E (2010) Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2. J Catal 273:182–190

    Article  CAS  Google Scholar 

  • De Clercq A, Margeat O, Sitja G, Henry CR, Giorgio S (2016) Core–shell Pd–Pt nanocubes for the CO oxidation. J Catal 336:33–40

    Article  CAS  Google Scholar 

  • DePuccio D, Ruíz-Rodríguez L, Rodríguez-Castellón E, Botella P, López NJ, Landry C (2016) Investigating the influence of Au nanoparticles on porous SiO2-WO3 and WO3 methanol transformation catalysts. J Phys Chem C 120:27954–27963

  • Du Y, Ma W, Liu P, Zou B, Ma J (2016) Magnetic CoFe2O4 nanoparticles supported on titanate nanotubes (CoFe2O4/TNTs) as a novel heterogeneous catalyst for peroxymonosulfate activation and degradation of organic pollutants. J Hazard Mater 308:58–66

    Article  CAS  Google Scholar 

  • Eriksson S, Rojas S, Boutonnet M, Fierro JLG (2007) Effect of Ce-doping on Rh/ZrO2 catalysts for partial oxidation of methane. Appl Catal A Gen 326(1):8–16

    Article  CAS  Google Scholar 

  • Gómez-Cortés A, Diaz G, Zanella R, Ramírez H, Santiago P, Saniger JM (2009) Au− Ir/TiO2 prepared by deposition precipitation with urea: improved activity and stability in CO oxidation. J Phys Chem C 113(22):9710–9720

    Article  CAS  Google Scholar 

  • Grass ME, Joo SH, Zhang Y, Somorjai GA (2009) Colloidally synthesized monodisperse Rh nanoparticles supported on SBA-15 for size-and pretreatment-dependent studies of CO oxidation. J Phys Chem C 113(20):8616–8623

    Article  CAS  Google Scholar 

  • Grunwaldt J-D, Maciejewski M, Becker OS, Fabrizioli P, Baiker A (1999) Comparative study of Au/TiO2 and Au/ZrO2 catalysts for low-temperature CO oxidation. J Catal 186(2):458–469

    Article  CAS  Google Scholar 

  • Guan H, Lin J, Qiao B, Yang X, Li L, Miao S, Liu J, Wang A, Wang X, Zhang T (2016) Catalytically active Rh sub-nanoclusters on TiO2 for CO oxidation at cryogenic temperatures. Angew Chem Int Ed 55(8):2820–2824

    Article  CAS  Google Scholar 

  • Guczi L, Beck A, Horvath A, Koppány Z, Stefler G, Frey K, Sajo I, Geszti O, Bazin D, Lynch J (2003) AuPd bimetallic nanoparticles on TiO2: XRD, TEM, in situ EXAFS studies and catalytic activity in CO oxidation. J Mol Catal A 204:545–552

    Article  CAS  Google Scholar 

  • Guo Y, Lu S, Lin J, Zhao C, Li C (2017) Reaction characteristics of KOH-modified copper manganese oxides catalysts for low-temperature CO oxidation in the presence of CO2. React Kinet Mech Catal 120(1):149–165

    Article  CAS  Google Scholar 

  • Gustafson J, Westerström R, Resta A, Mikkelsen A, Andersen JN, Balmes O, Torrelles X, Schmid M, Varga P, Hammer B (2009) Structure and catalytic reactivity of Rh oxides. Catal Today 145(3-4):227–235

    Article  CAS  Google Scholar 

  • Hinojosa-Reyes M, Camposeco-Solis R, Zanella R, Rodriguez-Gonzalez V, Ruiz F (2018) Gold nanoparticle: enhanced CO oxidation at low temperatures by using Fe-doped TiO2 as support. Catal Lett 148(1):383–396

    Article  CAS  Google Scholar 

  • Hong X, Sun Y, Zhu T, Liu Z (2017) Pt-Au/MOx-CeO2 (M = Mn, Fe, Ti) Catalysts for the Co-oxidation of CO and H2 at room temperature. Molecules 22(3):351

    Article  CAS  Google Scholar 

  • Khan H, Swati IK (2016) Fe3+-doped anatase TiO2 with d–d transition, oxygen vacancies and Ti3+ centers: synthesis, characterization, UV–vis photocatalytic and mechanistic studies. Ind Eng Chem Res 55(23):6619–6633

    Article  CAS  Google Scholar 

  • Kiss J, Óvári L, Oszkó A, Pótári G, Tóth M, Baán K, Erdóhelyi A (2012) Structure and reactivity of Au–Rh bimetallic clusters on titanate nanowires, nanotubes and TiO2 (110). Catal Today 181(1):163–170

    Article  CAS  Google Scholar 

  • Konova P, Naydenov A, Venkov C, Mehandjiev D, Andreeva D, Tabakova T (2004) Activity and deactivation of Au/TiO2 catalyst in CO oxidation. J Mol Catal A: Chem 213(2):235–240

    Article  CAS  Google Scholar 

  • Kruse N, Chenakin S (2011) XPS characterization of Au/TiO2 catalysts: binding energy assessment and irradiation effects. Appl Catal A 391(1-2):367–376

    Article  CAS  Google Scholar 

  • Kung HH, Kung M, Costello C (2003) Supported Au catalysts for low temperature CO oxidation. J Catal 216(1-2):425–432

    Article  CAS  Google Scholar 

  • Liu X, Wang A, Li L, Zhang T, Mou CY, Lee JF (2011) Structural changes of Au–Cu bimetallic catalysts in CO oxidation: In situ XRD, EPR, XANES, and FT-IR characterizations. J Catal 278(2):288–296

    Article  CAS  Google Scholar 

  • Lu J, Kosuda KM, Van Duyne RP, Stair PC (2009) Surface acidity and properties of TiO2/SiO2 catalysts prepared by atomic layer deposition: UV− visible diffuse reflectance, DRIFTS, and visible Raman spectroscopy studies. J Phys Chem C 113(28):12412–12418

    Article  CAS  Google Scholar 

  • Maura K, Ashish M (2013) Nanoparticle catalysis for reforming of biomass-derived fuels. In: Suib S (ed) New and future developments in catalysis: catalysis by nanoparticles, Chapter 3. Elsevier, pp 63–93

  • McCafferty E, Wightman J (1998) Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method. Surf Interface Anal 26(8):549–564

    Article  CAS  Google Scholar 

  • McClory MM, Gonzalez RD (1986) Catalytic oxidation of carbon monoxide over ruthenium-rhodium (RuRh) silica bimetallic clusters. J Phys Chem 90(4):628–633

    Article  CAS  Google Scholar 

  • Méndez CM, Ramírez SJ, Zanella R (2011) CO oxidation on gold nanoparticles supported over titanium oxide nanotubes. Catal Today 166(1):172–179

    Article  CAS  Google Scholar 

  • Morgado E Jr, de Abreu MS, Pravia RC, Marinkovic BA, Jardim PM, Rizzo FC, Aráujo AS (2006) A study on the structure and thermal stability of titanate nanotubes as a function of sodium content. Solid State Sci 8(8):888–900

    Article  CAS  Google Scholar 

  • Ohyama J, Yamamoto A, Teramura K, Shishido T, Tanaka T (2011) Modification of metal nanoparticles with TiO2 and metal−support interaction in photodeposition. ACS Catal 1:187–192

    Article  CAS  Google Scholar 

  • Óvári L, Berkó A, Balázs N, Majzik Z, Kiss J (2010) Formation of Rh−Au core−shell nanoparticles on TiO2 (110) surface studied by STM and LEIS. Langmuir. 26(3):2167–2175

    Article  CAS  Google Scholar 

  • Ozawa M, Takahashi-Morita M, Kobayashi K, Haneda M (2017) Core-shell type ceria zirconia support for platinum and rhodium three way catalysts. Catal Today 281:482–489

    Article  CAS  Google Scholar 

  • Pokochueva EV, Burueva DB, Kovtunova LM, Bukhtiyarov AV, Gladky AY, Kovtunov KV, Koptyuga IV, Bukhtiyarovb VI (2020) Mechanistic in situ investigation of heterogeneous hydrogenation over Rh/TiO2 catalysts: selectivity, pairwise route, catalyst nature. Faraday Discuss. https://doi.org/10.1039/c9fd00138g

  • Qamar M, Yoon C, Oh H, Lee N, Park K, Kim D, Lee K, Lee W, Kim S (2008) Preparation and photocatalytic activity of nanotubes obtained from titanium dioxide. Catal Today 131(1-4):3–14

    Article  CAS  Google Scholar 

  • Raj R, Harold MP, Balakotaiah V (2015) Steady-state and dynamic hysteresis effects during lean co-oxidation of CO and C3H6 over Pt/Al2O3 monolithic catalyst. Chem Eng J 281:322–333

    Article  CAS  Google Scholar 

  • Royer S, Duprez D (2011) Catalytic oxidation of carbon monoxide over transition metal oxides. ChemCatChem. 3(1):24–65

    Article  CAS  Google Scholar 

  • Sandoval A, Louis C, Zanella R (2013) Improved activity and stability in CO oxidation of bimetallic Au–Cu/TiO2 catalysts prepared by deposition–precipitation with urea. Appl Catal B 140:363–377

    Article  CAS  Google Scholar 

  • Strayer ME (2015) Design of functional layered oxide materials through understanding structure-property relationships

  • Sun K, Kohyama M, Tanaka S, Takeda S (2017) Reaction mechanism of the low-temperature water–gas shift reaction on Au/TiO2 catalysts. J Phys Chem C 121(22):12178–12187

    Article  CAS  Google Scholar 

  • Tang H, Su Y, Zhang B, Lee AF, Isaacs MA, Wilson K, Li L, Ren Y, Huang J, Haruta M (2017) Classical strong metal–support interactions between gold nanoparticles and titanium dioxide. Sci Adv 3(10):e1700231

    Article  CAS  Google Scholar 

  • Torrente-Murciano L, Lapkin AA, Bavykin DV, Walsh FC, Wilson K (2007) Highly selective Pd/titanate nanotube catalysts for the double-bond migration reaction. J Catal 245(2):272–278

    Article  CAS  Google Scholar 

  • Vaiano V, Iervolino G, Sannino D, Murcia JJ, Hidalgo MC, Ciambelli P, Navío JA (2016) Photocatalytic removal of patent blue V dye on Au-TiO2 and Pt-TiO2 catalysts. Appl Catal B 188:134–146

    Article  CAS  Google Scholar 

  • Wang C-Y, Liu C-Y, Zheng X, Chen J, Shen T (1998) The surface chemistry of hybrid nanometer-sized particles I. Photochemical deposition of gold on ultrafine TiO2 particles. Colloid Surface B 131(1-3):271–280

    Article  CAS  Google Scholar 

  • Wang Y, Russell SD, Shimabukur RL (2005) Voltage-induced broad-spectrum reflectivity change with surface-plasmon waves. J Appl Phys 97(2):023708

  • Xue X, Gu L, Cao X, Song Y, Zhu L, Peng C (2009) One-pot, high-yield synthesis of titanate nanotube bundles decorated by Pd (Au) clusters for stable electrooxidation of methanol. J Solid State Chem 182(10):2912–2917

    Article  CAS  Google Scholar 

  • Yang J, Bai H, Tan X, Lian J (2006) IR and XPS investigation of visible-light photocatalysis—nitrogen–carbon-doped TiO2 film. Appl Surf Sci 253(4):1988–1994

    Article  CAS  Google Scholar 

  • Yao Q, Wang C, Wang H, Yan H, Lu J (2016) Revisiting the Au particle size effect on TiO2-coated Au/TiO2 catalysts in CO oxidation reaction. J Phys Chem C 120(17):9174–9183

    Article  CAS  Google Scholar 

  • Ying TJ, Hsing CJ, Hsun LC (2009) Low temperature carbon monoxide oxidation over gold nanoparticles supported on sodium titanate nanotubes. J Mol Catal A Chem 298(1–2):115–124

  • Zanella R, Giorgio S, Henry CR, Louis C (2002) Alternative methods for the preparation of gold nanoparticles supported on TiO2. J Phys Chem B 106(31):7634–7642

    Article  CAS  Google Scholar 

  • Zettsu N, McLellan JM, Wiley B, Yin Y, Li ZY, Xia Y (2006) Synthesis, stability, and surface plasmonic properties of rhodium multipods, and their use as substrates for surface-enhanced Raman scattering. Angew Chem Int Ed 45(8):1288–1292

    Article  CAS  Google Scholar 

Download references

Funding

The authors want to thank the financial support provided by (CONACYT) through the “Fondo Sectorial de Investigación para la Educación” A1-S-18269 grant and the Dirección General de Asuntos del Personal Académico-UNAM through the PAPIIT IN103719 grant and the Mexican Petroleum Institute.

Author information

Authors and Affiliations

Authors

Contributions

Roberto Camposeco: formal analysis, writing–original draft preparation, conceptualization, and validation. Salvador Castillo: conceptualization and validation. Mariana Hinojosa-Reyes: formal analysis. Noel Nava: investigation. Rodolfo Zanella: formal analysis, writing–original draft preparation, supervision, and project administration.

Corresponding author

Correspondence to Rodolfo Zanella.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Not applicable

Consent for publication

Not applicable

Consent to publish

Not applicable

Additional information

Responsible Editor: Santiago V. Luis

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camposeco, R., Hinojosa-Reyes, M., Castillo, S. et al. Synthesis and characterization of highly dispersed bimetallic Au-Rh nanoparticles supported on titanate nanotubes for CO oxidation reaction at low temperature. Environ Sci Pollut Res 28, 10734–10748 (2021). https://doi.org/10.1007/s11356-020-11341-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-11341-7

Keywords

Navigation