Skip to main content

Advertisement

Log in

Polyaniline-Manganese Ferrite Supported Platinum–Ruthenium Nanohybrid Electrocatalyst: Synergizing Tailoring Toward Boosted Ethanol Oxidation Reaction

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Tailoring effective electrocatalysts for the ethanol oxidation process with low-price, high electrocatalytic activity, and long lifetime is crucial for large-scale application of direct ethanol fuel cells. Herein, it was aimed to provide a facile method for designing Polyaniline-Manganese ferrite (PANI-MnFe2O4) supported nanocatalysts modified with Pt/Ru to be utilized for ethanol electrooxidation. The successful synthesis of the PANI-MnFe2O4/Pt/Ru nanocomposite was confirmed by the physicochemical analysis techniques including Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and X-ray diffraction. The electrooxidation of ethanol at room temperature was investigated using a number of electrochemical characterizations such as cyclic voltammetry, linear sweep voltammetry, and chronoamperometry techniques. In comparison to other electrodes, the PANI-MnFe2O4/Pt–Ru electrode demonstrated superior efficiency in terms of boosting forward current (If, 100 mAcm−2) and increasing the electrochemically active surface area (ECSA, 30.3) that was required for ethanol molecules during the oxidation process. Furthermore, results demonstrated that introducing Ru and Pt to the PANI-MnFe2O4 support enhanced its efficiency towards the ethanol oxidation reaction by boosting both the stability (94%) and the carbon monoxide tolerance, which are both critical for alkaline direct ethanol fuel cell practical applications. This study paves the way for a novel approach for engineering high-performance, low-cost electrocatalysts that may be utilized as an alternative to commercial electrocatalysts in fuel cell technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dong L, Gari RRS, Li Z, Craig MM, Hou S (2010) Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 48(3):781–787

    Article  CAS  Google Scholar 

  2. Boulaghi M, Taleghani HG, Lashkenari MS, Ghorbani M (2018) Platinum-palladium nanoparticles-loaded on N-doped graphene oxide/polypyrrole framework as a high performance electrode in ethanol oxidation reaction. Int J Hydrogen Energy 43(32):15164–15175

    Article  CAS  Google Scholar 

  3. Karimi-Maleh H, Tahernejad-Javazmi F, Atar N, Yola MLT, Gupta VK, Ensafi AA (2015) A novel DNA biosensor based on a pencil graphite electrode modified with polypyrrole/functionalized multiwalled carbon nanotubes for determination of 6-mercaptopurine anticancer drug. Ind Eng Chem Res 54(14):3634–3639

    Article  CAS  Google Scholar 

  4. Shafaei Douk A, Saravani H, Yazdan Abad MZ, Noroozifar M (2020) Three-dimensional engineering of nanoparticles to fabricate a Pd–Au aerogel as an advanced supportless electrocatalyst for low-temperature direct ethanol fuel cells. ACS Appl Energy Mater 3(8):7527–7534

    Article  CAS  Google Scholar 

  5. Silva JCM, Ntais S, Rajaraman V, Teixeira-Neto É, Teixeira-Neto ÂA, Neto AO, Antoniassi RM, Spinacé EV, Baranova EA (2019) The catalytic activity of Pt: Ru nanoparticles for ethylene glycol and ethanol electrooxidation in a direct alcohol fuel cell. Electrocatalysis 10(3):203–213

    Article  CAS  Google Scholar 

  6. Cunha E, Ribeiro J, Kokoh K, De Andrade A (2011) Preparation, characterization and application of Pt–Ru–Sn/C trimetallic electrocatalysts for ethanol oxidation in direct fuel cell. Int J Hydrogen Energy 36(17):11034–11042

    Article  CAS  Google Scholar 

  7. Yang H, Geng L, Zhang Y, Chang G, Zhang Z, Liu X, Lei M, He Y (2019) Graphene-templated synthesis of palladium nanoplates as novel electrocatalyst for direct methanol fuel cell. Appl Surf Sci 466:385–392

    Article  CAS  Google Scholar 

  8. Karaman C (2021) Boosting effect of nitrogen and phosphorous Co-doped three-dimensional graphene architecture: highly selective electrocatalysts for carbon dioxide electroreduction to formate. Top Catal. https://doi.org/10.1007/s11244-021-01500-6

    Article  Google Scholar 

  9. Karaman C, Karaman O, Yola BB, Ulker İ, Atar N, Yola ML (2021) A novel electrochemical aflatoxin B1 immunosensor based on gold nanoparticles decorated porous graphene nanoribbon and Ag nanocubes incorporated MoS2 nano. New J Chem 45(25):11222–11233. https://doi.org/10.1039/D1NJ02293H

    Article  CAS  Google Scholar 

  10. Karaman O, Ozdogan H, Uncu VA, Karaman C, Tamar AG (2020) Investigation of the effects of different composite materials on neutron contamination caused by medical LINAC. Kerntechnik 85(5):401–407. https://doi.org/10.3139/124.200022

    Article  Google Scholar 

  11. Karimi-Maleh H, Ayati A, Davoodi R, Tanhaei B, Karimi F, Malekmohammadi S, Orooji Y, Fu L, Sillanpaa M (2021) Recent advances in using of chitosan-based adsorbents for removal of pharmaceutical contaminants: a review. J Clean Prod. https://doi.org/10.1016/j.jclepro.2021.125880

    Article  Google Scholar 

  12. Karimi-Maleh H, Karimi F, Fu L, Sanati AL, Alizadeh M, Karaman C, Orooji Y (2022) Cyanazine herbicide monitoring as a hazardous substance by a DNA nanostructure biosensor. J Hazard Mater 423:127058. https://doi.org/10.1016/j.jhazmat.2021.127058

    Article  CAS  PubMed  Google Scholar 

  13. Karimi-Maleh H, Orooji Y, Karimi F, Alizadeh M, Baghayeri M, Rouhi J, Tajik S, Beitollahi HD, Agarwal S, Gupta VK, Rajendran S, Ayati A, Fu L, Sanati AL, Tanhaei B, Sen F, Shabani-nooshabadi M, Asrami PN, Al-Othman A (2021) A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens Bioelectron 184:113252. https://doi.org/10.1016/j.bios.2021.113252

    Article  CAS  PubMed  Google Scholar 

  14. Karimi-Maleh H, Yola ML, Atar N, Orooji Y, Karimi F, Kumar PS, Rouhi J, Baghayeri M (2021) A novel detection method for organophosphorus insecticide fenamiphos: molecularly imprinted electrochemical sensor based on core-shell Co3O4@MOF-74 nanocomposite. J Colloid Interf Sci 592:174–185. https://doi.org/10.1016/j.jcis.2021.02.066

    Article  CAS  Google Scholar 

  15. Korkmaz S, Kariper İA, Karaman O, Karaman C (2021) The production of rGO/RuO2 aerogel supercapacitor and analysis of its electrochemical performances. Ceram Int. https://doi.org/10.1016/j.ceramint.2021.08.366

    Article  Google Scholar 

  16. Al Sharabati M, Abokwiek R, Al-Othman A, Tawalbeh M, Karaman C, Orooji Y, Karimi F (2021) Biodegradable polymers and their nano-composites for the removal of endocrine-disrupting chemicals (EDCs) from wastewater: a review. Environ Res. https://doi.org/10.1016/j.envres.2021.111694

    Article  PubMed  Google Scholar 

  17. Boke CP, Karaman O, Medetalibeyoglu H, Karaman C, Atar N, Yola ML (2020) A new approach for electrochemical detection of organochlorine compound lindane: development of molecular imprinting polymer with polyoxometalate/carbon nitride nanotubes composite and validation. Microchem J. https://doi.org/10.1016/j.microc.2020.105012

    Article  Google Scholar 

  18. Karaman C, Karaman O, Atar N, Yola ML (2021) Sustainable electrode material for high-energy supercapacitor: biomass-derived graphene-like porous carbon with three-dimensional hierarchically ordered ion highways. Phys Chem Chem Phys 23(22):12807–12821

    Article  CAS  Google Scholar 

  19. Aykan A, Karaman O, Karaman C, Atar N, Yola ML (2021) A comparative study of CO catalytic oxidation on the single vacancy and di-vacancy graphene supported single-atom iridium catalysts: a DFT analysis. Surfaces Interfaces 25:101293

    Article  Google Scholar 

  20. Karaman C, Bayram E, Karaman O, Aktaş Z (2020) Preparation of high surface area nitrogen doped graphene for the assessment of morphologic properties and nitrogen content impacts on supercapacitors. J Electroanal Chem 868:114197

    Article  CAS  Google Scholar 

  21. Ensafi AA, Karimi-Maleh H, Mallakpour S (2011) N-(3,4-Dihydroxyphenethyl)-3,5-dinitrobenzamide-modified multiwall carbon nanotubes paste electrode as a novel sensor for simultaneous determination of penicillamine, uric acid, and tryptophan. Electroanalysis 23(6):1478–1487. https://doi.org/10.1002/elan.201000741

    Article  CAS  Google Scholar 

  22. Karimi-Maleh H, Keyvanfard M, Alizad K, Fouladgar M, Beitollahi H, Mokhtari A, Gholami-Orimi F (2011) Voltammetric determination of N-actylcysteine using modified multiwall carbon nanotubes paste electrode. Int J Electrochem Sc 6(12):6141–6150

    CAS  Google Scholar 

  23. Pieta IS, Rathi A, Pieta P, Nowakowski R, Hołdynski M, Pisarek M, Kaminska A, Gawande MB, Zboril R (2019) Electrocatalytic methanol oxidation over Cu, Ni and bimetallic Cu-Ni nanoparticles supported on graphitic carbon nitride. Appl Catal B 244:272–283

    Article  CAS  Google Scholar 

  24. Khan N, Anwer AH, Khan MD, Azam A, Ibhadon A, Khan MZ (2021) Magnesium ferrite spinels as anode modifier for the treatment of Congo red and energy recovery in a single chambered microbial fuel cell. J Hazard Mater 410:124561

    Article  CAS  Google Scholar 

  25. Tahir K, Miran W, Jang J, Maile N, Shahzad A, Moztahida M, Ghani AA, Kim B, Jeon H, Lim S-R (2021) Nickel ferrite/MXene-coated carbon felt anodes for enhanced microbial fuel cell performance. Chemosphere 268:128784

    Article  CAS  Google Scholar 

  26. Parreira LS, Antoniassi RM, Freitas IC, de Oliveira DC, Spinacé EV, Camargo PH, dos Santos MC (2019) MWCNT-COOH supported PtSnNi electrocatalysts for direct ethanol fuel cells: low Pt content, selectivity and chemical stability. Renew Energy 143:1397–1405

    Article  CAS  Google Scholar 

  27. Miyawaki T, Tobiishi K, Takenaka S, Kadokami K (2018) A rapid method, combining microwave-assisted extraction and gas chromatography-mass spectrometry with a database, for determining organochlorine pesticides and polycyclic aromatic hydrocarbons in soils and sediments. Soil Sediment Contamination: An Int J 27(1):31–45

    Article  CAS  Google Scholar 

  28. Zhang Z, Wu Q, Mao K, Chen Y, Du L, Bu Y, Zhuo O, Yang L, Wang X, Hu Z (2018) Efficient ternary synergism of platinum/tin oxide/nitrogen-doped carbon leading to high-performance ethanol oxidation. ACS Catal 8(9):8477–8483

    Article  CAS  Google Scholar 

  29. Shi W, Wang Q, Qin F, Yu J, Jia M, Gao H, Zhang Y, Zhao Y, Li G (2017) N-doped carbon encapsulated nickel nanoparticles: rational fabrication and ultra-high performance for ethanol oxidation. Electrochim Acta 232:332–338

    Article  CAS  Google Scholar 

  30. Wu T, Fan J, Li Q, Shi P, Xu Q, Min Y (2018) Palladium nanoparticles anchored on anatase titanium dioxide-black phosphorus hybrids with heterointerfaces: highly electroactive and durable catalysts for ethanol electrooxidation. Adv Energy Mater 8(1):1701799

    Article  Google Scholar 

  31. Kumar R, da Silva ET, Singh RK, Savu R, Alaferdov AV, Fonseca LC, Carossi LC, Singh A, Khandka S, Kar KK (2018) Microwave-assisted synthesis of palladium nanoparticles intercalated nitrogen doped reduced graphene oxide and their electrocatalytic activity for direct-ethanol fuel cells. J Colloid Interface Sci 515:160–171

    Article  CAS  Google Scholar 

  32. Mozafari V, Parsa JB (2020) Electrochemical synthesis of Pd supported on PANI-MWCNTs-SnO2 nanocomposite as a novel catalyst towards ethanol oxidation in alkaline media. Synth Met 259:116214

    Article  CAS  Google Scholar 

  33. Lashkenari MS, Ghorbani M, Silakhori N, Karimi-Maleh H (2021) Enhanced electrochemical performance and stability of Pt/Ni electrocatalyst supported on SiO2-PANI nanocomposite: a combined experimental and theoretical study. Mater Chem Phys 262:124290

    Article  CAS  Google Scholar 

  34. Nodehi Z, Rafati AA, Ghaffarinejad A (2018) Palladium-silver polyaniline composite as an efficient catalyst for ethanol oxidation. Appl Catal A 554:24–34

    Article  CAS  Google Scholar 

  35. Kafshgari LA, Ghorbani M, Azizi A (2017) Fabrication and investigation of MnFe2O4/MWCNTs nanocomposite by hydrothermal technique and adsorption of cationic and anionic dyes. Appl Surf Sci 419:70–83

    Article  CAS  Google Scholar 

  36. Wang P-C, Dan Y, Liu L-H (2014) Effect of thermal treatment on conductometric response of hydrogen gas sensors integrated with HCl-doped polyaniline nanofibers. Mater Chem Phys 144(1):155–161

    Article  CAS  Google Scholar 

  37. Kotresh S, Ravikiran Y, Vijayakumari S, Thomas S (2017) Interfacial pn heterojunction of polyaniline-nickel ferrite nanocomposite as room temperature liquefied petroleum gas sensor. Compos Interfaces 24(6):549–561

    Article  CAS  Google Scholar 

  38. Kooti M, Sedeh AN (2013) Synthesis and characterization of NiFe2O4 magnetic nanoparticles by combustion method. J Mater Sci Technol 29(1):34–38

    Article  CAS  Google Scholar 

  39. Nasirian S, Moghaddam HM (2014) Effect of different titania phases on the hydrogen gas sensing features of polyaniline/TiO2 nanocomposite. Polymer 55(7):1866–1874

    Article  CAS  Google Scholar 

  40. Kabir S, Serov A, Artyushkova K, Atanassov P (2016) Design of novel graphene materials as a support for palladium nanoparticles: highly active catalysts towards ethanol electrooxidation. Electrochim Acta 203:144–153

    Article  CAS  Google Scholar 

  41. Tan JL, De Jesus AM, Chua SL, Sanetuntikul J, Shanmugam S, Tongol BJV, Kim H (2017) Preparation and characterization of palladium-nickel on graphene oxide support as anode catalyst for alkaline direct ethanol fuel cell. Appl Catal A 531:29–35

    Article  CAS  Google Scholar 

  42. Dutta A, Mondal A, Broekmann P, Datta J (2017) Optimal level of Au nanoparticles on Pd nanostructures providing remarkable electro-catalysis in direct ethanol fuel cell. J Power Sources 361:276–284

    Article  CAS  Google Scholar 

  43. Hameed RA (2017) Enhanced ethanol electro-oxidation reaction on carbon supported Pd-metal oxide electrocatalysts. J Colloid Interface Sci 505:230–240

    Article  Google Scholar 

  44. Rahim MA, Hameed RA, Khalil M (2004) Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium. J Power Sources 134(2):160–169

    Article  Google Scholar 

  45. Zhang K, Bin D, Yang B, Wang C, Ren F, Du Y (2015) Ru-assisted synthesis of Pd/Ru nanodendrites with high activity for ethanol electrooxidation. Nanoscale 7(29):12445–12451

    Article  CAS  Google Scholar 

  46. Feng Y, Bin D, Yan B, Du Y, Majima T, Zhou W (2017) Porous bimetallic PdNi catalyst with high electrocatalytic activity for ethanol electrooxidation. J Colloid Interface Sci 493:190–197

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fatemeh Karimi, Mohammad Soleimani Lashkenari or Ceren Karaman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, F., Ghorbani, M., Lashkenari, M.S. et al. Polyaniline-Manganese Ferrite Supported Platinum–Ruthenium Nanohybrid Electrocatalyst: Synergizing Tailoring Toward Boosted Ethanol Oxidation Reaction. Top Catal 65, 716–725 (2022). https://doi.org/10.1007/s11244-021-01537-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01537-7

Keywords

Navigation