Skip to main content
Log in

Fabrication of polyaniline/SBA-15-supported platinum/cobalt nanocomposites as promising electrocatalyst for formic acid oxidation

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, polyaniline/SBA-15 (PANI/SBA-15) nanocomposites were successfully synthesized as substrates for platinum–cobalt (PtCo) alloy. The PANI/SBA-15 was prepared via in situ emulsion polymerization, and PtCo nanocatalyst was fabricated through a simple electrodeposition method. Subsequently, the synthesized nanocomposites were characterized by SEM, FT-IR spectroscopy, and XRD techniques. The fabricated nanostructure (PtCo/PANI/SBA-15) was then employed as electrode for formic acid oxidation reaction (FAOR). Several samples of PANI/SBA-15-supported PtCo electrocatalysts were synthesized by varying the Co precursor concentration in the electrodeposition solution. The PtCo 0.05/PANI/SBA-15 sample revealed outstanding electrocatalytic activity and stability for FAOR. Based on cyclic voltammetry (CV) measurements, this electrocatalyst generated a maximum current density of about 63 mA cm−2 in the forward potential scan, which is highly desirable for FAOR improvement. Additionally, the PtCo 0.05/PANI/SBA-15 resulted in good performance in ethanol and methanol oxidation, indicating its capability of being applied in other fuel cell technologies.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Pelosato R, Cordaro G, Stucchi D, Cristiani C, Dotelli G (2015) Cobalt based layered perovskites as cathode material for intermediate temperature solid oxide fuel cells: a brief review. J Power Sources 298:46–67

    CAS  Google Scholar 

  2. He Z, Li H, Birgersson E (2016) Correlating variability of modeling parameters with cell performance: Monte Carlo simulation of a quasi-3D planar solid oxide fuel cell. Renew Energy 85:1301–1315

    CAS  Google Scholar 

  3. Sammes N (2006) Fuel cell technology: reaching towards commercialization. Springer Science & Business Media, Cham

    Google Scholar 

  4. Service RF (2002) Fuel cells. Shrinking fuel cells promise power in your pocket. Science 296(5571):1222

    CAS  PubMed  Google Scholar 

  5. Lai J, Niu W, Li S, Wu F, Luque R, Xu G (2016) Concave and duck web-like platinum nanopentagons with enhanced electrocatalytic properties for formic acid oxidation. J Mater Chem A 4(3):807–812

    CAS  Google Scholar 

  6. De Souza RFB, Tusi MM, Brandalise M, Dias RR, Linardi M, Spinace EV, dos Santos MC, Neto AO (2010) Preparation of PtSn/C-Rh and PtSn/C-CeO2 for ethanol electro-oxidation. Int J Electrochem Sci 5:895–902

    Google Scholar 

  7. Kakati N, Maiti J, Lee SH, Jee SH, Viswanathan B, Yoon YS (2014) Anode catalysts for direct methanol fuel cells in acidic media: do we have any alternative for Pt or Pt–Ru? Chem Rev 114(24):12397–12429

    CAS  PubMed  Google Scholar 

  8. Chen D, Luo L-M, Zhang R-H, Hu Q-Y, Yang C-Y, Zhou X-W, Chen S-N, Dai Z-X (2018) Highly monodispersed ternary hollow PtPdAu alloy nanocatalysts with enhanced activity toward methanol oxidation. J Electroanal Chem 812:90–95

    CAS  Google Scholar 

  9. Wang Y-J, Zhao N, Fang B, Li H, Bi XT, Wang H (2015) Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chem Rev 115(9):3433–3467

    CAS  PubMed  Google Scholar 

  10. Esposito DV, Hunt ST, Stottlemyer AL, Dobson KD, McCandless BE, Birkmire RW, Chen JG (2010) Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates. Angew Chem Int Ed 49(51):9859–9862

    CAS  Google Scholar 

  11. Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2(5):781–794

    CAS  Google Scholar 

  12. Wang Y-X, Liu C-F, Yang M-L, Zhao X-H, Xue Z-X, Xia Y-Z (2017) Concave Pt-Cu-Fe ternary nanocubes: one-pot synthesis and their electrocatalytic activity of methanol and formic acid oxidation. Chin Chem Lett 28(1):60–64

    CAS  Google Scholar 

  13. Suo Y, Guo Y, Rong C, Zhang Z, Hu G (2017) Synthesis of highly active Pt-Pd-Cu/C catalysts for formic acid oxidation. Int J Electrochem Sci 12:3561–3575

    CAS  Google Scholar 

  14. Chen Q, Cao Z, Du G, Kuang Q, Huang J, Xie Z, Zheng L (2017) Excavated octahedral Pt-Co alloy nanocrystals built with ultrathin nanosheets as superior multifunctional electrocatalysts for energy conversion applications. Nano Energy 39:582–589

    CAS  Google Scholar 

  15. Hosseini M, Mahmoodi R, Amjadi MS (2017) Carbon supported Ni 1 Pt 1 nanocatalyst as superior electrocatalyst with increased power density in direct borohydride-hydrogen peroxide and investigation of cell impedance at different temperatures and discharging currents. Energy 131:137–148

    CAS  Google Scholar 

  16. Kwon JA, Kim M-S, Shin DY, Kim JY, Lim D-H (2017) First-principles understanding of durable titanium nitride (TiN) electrocatalyst supports. J Ind Eng Chem 49:69–75

    CAS  Google Scholar 

  17. Hung C-M (2012) Complex PtPdRh nanoparticles: synthesis, characterization, and performance in the electrocatalytic oxidation of ammonia. Powder Technol 232:18–23

    CAS  Google Scholar 

  18. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJ, Lucas CA, Wang G, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6(3):241

    CAS  PubMed  Google Scholar 

  19. Ruiz-Camacho B, Medina-Ramírez A, Fuentes-Ramírez R, Gómez CM (2017) Simple synthesis of Pt-Ag/SnO2-C for use as a catalyst of methanol oxidation in alkaline media. J Solid State Electrochem 21(8):2449–2456

    CAS  Google Scholar 

  20. Cao X, Wang N, Han Y, Gao C, Xu Y, Li M, Shao Y (2015) PtAg bimetallic nanowires: facile synthesis and their use as excellent electrocatalysts toward low-cost fuel cells. Nano Energy 12:105–114

    CAS  Google Scholar 

  21. Amani M, Kazemeini M, Hamedanian M, Pahlavanzadeh H, Gharibi H (2015) Investigation of methanol oxidation on a highly active and stable Pt–Sn electrocatalyst supported on carbon–polyaniline composite for application in a passive direct methanol fuel cell. Mater Res Bull 68:166–178

    CAS  Google Scholar 

  22. Cai Z, Kuang Y, Qi X, Wang P, Zhang Y, Zhang Z, Sun X (2015) Ultrathin branched PtFe and PtRuFe nanodendrites with enhanced electrocatalytic activity. J Mater Chem A 3(3):1182–1187

    CAS  Google Scholar 

  23. Xia BY, Wu HB, Li N, Yan Y, Lou XWD, Wang X (2015) One-pot synthesis of Pt–Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew Chem 127(12):3868–3872

    Google Scholar 

  24. Huang Y, Huang H, Gao Q, Gan C, Liu Y, Fang Y (2014) Electroless synthesis of two-dimensional sandwich-like Pt/Mn 3 O 4/reduced-graphene-oxide nanocomposites with enhanced electrochemical performance for methanol oxidation. Electrochim Acta 149:34–41

    CAS  Google Scholar 

  25. Johansson A-C, Larsen JV, Verheijen MA, Haugshøj KB, Clausen HF, Kessels WM, Christensen LH, Thomsen EV (2014) Electrocatalytic activity of atomic layer deposited Pt–Ru catalysts onto N-doped carbon nanotubes. J Catal 311:481–486

    CAS  Google Scholar 

  26. Xie A, Tao F, Hu L, Li Y, Sun W, Jiang C, Cheng F, Luo S, Yao C (2017) Synthesis and enhanced electrochemical performance of Pt-Ag/porous polyaniline composites for glycerol oxidation. Electrochim Acta 231:502–510

    CAS  Google Scholar 

  27. El-Moghny MGA, Alalawy HH, Mohammad AM, Mazhar AA, El-Deab MS, El-Anadouli BE (2017) Conducting polymers inducing catalysis: enhanced formic acid electro-oxidation at a Pt/polyaniline nanocatalyst. Int J Hydrogen Energy 42(16):11166–11176

    Google Scholar 

  28. Yunus S, Attout A, Bertrand P (2009) Controlled aniline polymerization strategies for polyaniline micro-and nano self-assembling into practical electronic devices. Langmuir 25(3):1851–1854

    CAS  PubMed  Google Scholar 

  29. Arjomandi J, Lee JY, Movafagh R, Moghanni-Bavil-Olyaei H, Parvin MH (2018) Polyaniline/aluminum and iron oxide nanocomposites supercapacitor electrodes with high specific capacitance and surface area. J Electroanal Chem 810:100–108

    CAS  Google Scholar 

  30. Soleimani-Lashkenari M, Rezaei S, Fallah J, Rostami H (2018) Electrocatalytic performance of Pd/PANI/TiO2 nanocomposites for methanol electrooxidation in alkaline media. Synth Met 235:71–79

    CAS  Google Scholar 

  31. Li D, Huang J, Kaner RB (2008) Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc Chem Res 42(1):135–145

    Google Scholar 

  32. Prathap MA, Srivastava R (2013) Tailoring properties of polyaniline for simultaneous determination of a quaternary mixture of ascorbic acid, dopamine, uric acid, and tryptophan. Sens Actuators B: Chem 177:239–250

    Google Scholar 

  33. Wang YG, Li HQ, Xia YY (2006) Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv Mater 18(19):2619–2623

    CAS  Google Scholar 

  34. Tran HD, Li D, Kaner RB (2009) One-dimensional conducting polymer nanostructures: bulk synthesis and applications. Adv Mater 21(14–15):1487–1499

    CAS  Google Scholar 

  35. Wan M (2008) A template-free method towards conducting polymer nanostructures. Adv Mater 20(15):2926–2932

    CAS  Google Scholar 

  36. Huang J, Kaner RB (2006) The intrinsic nanofibrillar morphology of polyaniline. Chem Commun 4:367–376

    Google Scholar 

  37. Song N, Yang Y-W (2015) Molecular and supramolecular switches on mesoporous silica nanoparticles. Chem Soc Rev 44(11):3474–3504

    CAS  PubMed  Google Scholar 

  38. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120(24):6024–6036

    CAS  Google Scholar 

  39. Liu X, Xu D, Zhang D, Zhang G, Zhang L (2016) Superior performance of 3 D Co-Ni bimetallic oxides for catalytic degradation of organic dye: investigation on the effect of catalyst morphology and catalytic mechanism. Appl Catal B 186:193–203

    CAS  Google Scholar 

  40. Chen S, Wei Z, Qi X, Dong L, Guo Y-G, Wan L, Shao Z, Li L (2012) Nanostructured polyaniline-decorated Pt/C@ PANI core–shell catalyst with enhanced durability and activity. J Am Chem Soc 134(32):13252–13255

    CAS  PubMed  Google Scholar 

  41. Tayebi H-A, Dalirandeh Z, Shokuhi Rad A, Mirabi A, Binaeian E (2016) Synthesis of polyaniline/Fe3O4 magnetic nanoparticles for removal of reactive red 198 from textile waste water: kinetic, isotherm, and thermodynamic studies. Desalin Water Treat 57(47):22551–22563

    CAS  Google Scholar 

  42. Chen M, Lou B, Ni Z, Xu B (2015) PtCo nanoparticles supported on expanded graphite as electrocatalyst for direct methanol fuel cell. Electrochim Acta 165:105–109

    CAS  Google Scholar 

  43. Chen W, Kim J, Sun S, Chen S (2006) Electro-oxidation of formic acid catalyzed by FePt nanoparticles. Phys Chem Chem Phys 8(23):2779–2786

    CAS  PubMed  Google Scholar 

  44. Chen W, Kim J, Sun S, Chen S (2007) Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid. Langmuir 23(22):11303–11310

    CAS  PubMed  Google Scholar 

  45. Liao H, Zhu J, Hou Y (2014) Synthesis and electrocatalytic properties of PtBi nanoplatelets and PdBi nanowires. Nanoscale 6(2):1049–1055

    CAS  PubMed  Google Scholar 

  46. Sadhukhan M, Kundu MK, Bhowmik T, Barman S (2017) Highly dispersed platinum nanoparticles on graphitic carbon nitride: a highly active and durable electrocatalyst for oxidation of methanol, formic acid and formaldehyde. Int J Hydrogen Energy 42(15):9371–9383

    CAS  Google Scholar 

  47. Selvaraj V, Grace AN, Alagar M (2009) Electrocatalytic oxidation of formic acid and formaldehyde on nanoparticle decorated single walled carbon nanotubes. J Colloid Interface Sci 333(1):254–262

    CAS  PubMed  Google Scholar 

  48. Yi Q, Huang W, Liu X, Xu G, Zhou Z, Chen A (2008) Electroactivity of titanium-supported nanoporous Pd–Pt catalysts towards formic acid oxidation. J Electroanal Chem 619:197–205

    Google Scholar 

  49. Kristian N, Yan Y, Wang X (2008) Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation. Chem Commun 3:353–355

    Google Scholar 

  50. Venkateswara Rao C, Cabrera CR, Ishikawa Y (2011) Graphene-supported Pt–Au alloy nanoparticles: a highly efficient anode for direct formic acid fuel cells. J Phys Chem C 115(44):21963–21970

    CAS  Google Scholar 

  51. Waszczuk P, Barnard TM, Rice C, Masel RI, Wieckowski A (2002) A nanoparticle catalyst with superior activity for electrooxidation of formic acid. Electrochem Commun 4(7):599–603

    CAS  Google Scholar 

  52. Perales-Rondón JV, Busó-Rogero C, Solla-Gullón J, Herrero E, Feliu JM (2017) Formic acid electrooxidation on thallium modified platinum single crystal electrodes. J Electroanal Chem 800:82–88

    Google Scholar 

  53. Muthukrishnan A, Nabae Y, Hayakawa T, Okajima T, Ohsaka T (2015) Fe-containing polyimide-based high-performance ORR catalysts in acidic medium: a kinetic approach to study the durability of catalysts. Catal Sci Technol 5(1):475–483

    CAS  Google Scholar 

  54. Fleischmann C, Johnson G, Kuhn A (1964) The electrochemical oxidation of formic acid on platinum. J Electrochem Soc 111(5):602

    CAS  Google Scholar 

  55. Cheng N, Webster RA, Pan M, Mu S, Rassaei L, Tsang SC, Marken F (2010) One-step growth of 3–5nm diameter palladium electrocatalyst in a carbon nanoparticle–chitosan host and characterization for formic acid oxidation. Electrochim Acta 55(22):6601–6610

    CAS  Google Scholar 

  56. Zhou Y, Liu J, Ye J, Zou Z, Ye J, Gu J, Yu T, Yang A (2010) Poisoning and regeneration of Pd catalyst in direct formic acid fuel cell. Electrochim Acta 55(17):5024–5027

    CAS  Google Scholar 

  57. Antolini E (2009) Palladium in fuel cell catalysis. Energy Environ Sci 2(9):915–931

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Soleimani Lashkenari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lashkenari, M.S., Ghorbani, M., Safabakhsh, M. et al. Fabrication of polyaniline/SBA-15-supported platinum/cobalt nanocomposites as promising electrocatalyst for formic acid oxidation. J Appl Electrochem 50, 523–534 (2020). https://doi.org/10.1007/s10800-020-01400-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01400-9

Keywords

Navigation