Skip to main content
Log in

On the Correlation of Structure and Catalytic Performance of VPO Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Correlations are reported between structure and performance of current, state-of the art, industrial maleic anhydride production catalysts. Characterization was done with fully equilibrated catalysts to achieve reliable correlations of structure and activity. The kinetic analysis of the investigated VPO catalysts revealed differences in activities but comparable activation energies indicating active on-surface sites of similar nature but of different concentrations. One major crystalline component, VPP, and six minority compounds were identified, hence, VPP alone cannot be reasonably correlated with catalytic activity. XPS revealed elevated V5+ concentrations, differences in the P/V ratios, and the P surface content correlates negatively with catalytic activity. Hence, all crystalline phases must have noncrystalline, surface-layers containing V5+ species and varying P amounts. Deconvolution of Raman spectra identified four major vanadyl phosphate species of changing concentrations. One species, αI-VOPO4, was absent from the XRD patterns of the two most active catalysts, indicating that it is noncrystalline and, hence, integral part of the amorphous surface layers. These spectral/structural differences correlated with catalyst activity. The most active catalysts contain relatively more crystalline VPP, in accordance with literature. These active catalysts also have a higher amount of the amorphous V5+ surface species, α-VOPO4. All other V5+ species detected, δ- and g-VOPO4 are crystalline and negatively affect catalyst activity. Again in agreement with literature, the surface P/V ratio negatively correlates with catalyst activity, while the reported correlation of the V5+/V4+ ratio with activity was not observed. The multi-method approach chosen here, always strongly favored by H. Knözinger, generated a detailed picture of the compositional differences between the bulk and surface regions of the investigated catalysts and revealed how these differences correlate with catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2

Similar content being viewed by others

References

  1. Freerks M, Suda M (1974) Production of maleic anhydride by catalytic oxidation of saturated aliphatic hydrocarbons. US Patent 3832359 A

  2. Schneider R (1975) Catalyst for n-butane oxidation to maleic anhydride. US Patent 3864280 A

  3. Trifiro F, Grasselli R (2014) Top Catal 57:1188–1195

    Article  CAS  Google Scholar 

  4. Coulston GW, Bare SR, Kung H, Birkeland K, Bethke GK, Harlow R, Herron N, Lee PL (1997) Science 275:191–193

    Article  CAS  Google Scholar 

  5. Trivedi B (2013) Maleic anhydride. Springer, New York

    Google Scholar 

  6. Haase H (1972) Chem Ing Tech 44:80–86

    Article  Google Scholar 

  7. Chieregato A, Nieto JML, Cavani F (2015) Coord Chem Rev 301–302, 3–23

    Article  Google Scholar 

  8. Govender N, Friedrich HB, van Vuuren M (2004) J Catal Today 97:315–324

    Article  CAS  Google Scholar 

  9. Bartholomew CH, Farrauto RJ (2011) Fundamentals of industrial catalytic processes. Wiley, Hoboken

    Google Scholar 

  10. Abon M, Volta J-C (1997) Appl Catal A 157:173–193

    Article  CAS  Google Scholar 

  11. Busca G, Centi G, Trifiro F, Lorenzelli V (1986) J Phys Chem 90:1337–1344

    Article  CAS  Google Scholar 

  12. Zhanglin Y, Forissier M, Sneeden R, Vedrine J, Volta J (1994) J Catal 145:256–266

    Article  CAS  Google Scholar 

  13. Zhanglin Y, Forissier M, Vedrine J, Volta J (1994) J Catal 145:267–275

    Article  CAS  Google Scholar 

  14. Xue Z-Y, Schrader GL (1999) J Phys Chem B 103:9459–9467

    Article  CAS  Google Scholar 

  15. Sananes M, Hutchings G, Volta J (1995) J Catal 154:253–260

    Article  CAS  Google Scholar 

  16. Cornaglia L, Caspani C, Lombardo E (1991) Appl Catal 74:15–27

    Article  CAS  Google Scholar 

  17. Sola G, Pierini B, Petunchi J (1992) Catal Today 15:537–545

    Article  CAS  Google Scholar 

  18. Trifiro F (1993) Catal Today 16:91–98

    Article  CAS  Google Scholar 

  19. Centi G, Trifiro E, Busca G, Ebner J, Gleaves J (1988) In: Proceedings of the 9th International Congress on Catalysis, p 751

  20. Hutchings GJ, Desmartin-Chomel A, Olier R, Volta J-C (1994) Nature 368:41–45

    Article  CAS  Google Scholar 

  21. Agaskar P, De Caul L, Grasselli R (1994) Catal Lett 23:339–351

    Article  CAS  Google Scholar 

  22. Guliants VV, Holmes SJ (2001) Mol Catal A 175:227–239

    Article  CAS  Google Scholar 

  23. Ballarini N, Cavani F, Cortelli C, Ligi S, Pierelli F, Trifiro F, Fumagalli C, Mazzoni G, Monti T (2006) Top Catal 38:147–156

    Article  CAS  Google Scholar 

  24. Gai PL, Kourtakis K, Science (1995) 267:661–663

    Article  CAS  Google Scholar 

  25. Nguyen P, Sleight A, Roberts N, Warren W (1996) J Solid State Chem 122:259–265

    Article  CAS  Google Scholar 

  26. Gai PL, Kourtakis K, Coulson DR, Sonnichsen GC (1997) J Phys Chem B 101:9916–9925

    Article  CAS  Google Scholar 

  27. Gai P (1999) Top Catal 8:97–113

    Article  CAS  Google Scholar 

  28. Albonetti S, Cavani F, Ligi S, Pierelli F, Trifiro F, Ghel F, Mazzoni G (2000) Studies in surface science and catalysis. In: Gaigneaux E, Vos DD, Grange P, Jacobs P, Martens J, Ruiz P, Poncelet G (eds) Scientific bases for the preparation of heterogeneous catalysts, vol 143. Elsevier, Amsterdam, pp 963–973

    Chapter  Google Scholar 

  29. Albonetti S, Cavani F, Trifiro F, Venturoli P, Calestani G, Granados ML, Fierro J (1996) J Catal 160:52–64

    Article  CAS  Google Scholar 

  30. Ben Abdelouahab F, Olier R, Guilhaume N, Lefebvre F, Volta J (1992) J Catal 134:151–167

    Article  Google Scholar 

  31. Ben Abdelouahab F, Olier R, Ziyad M, Volta J (1995) J Catal 157:687–697

    Article  Google Scholar 

  32. Wachs IE, Jehng J-M, Deo G, Weckhuysen BM, Guliants VV, Benziger JB (1996) Catal Today 32:47–55

    Article  CAS  Google Scholar 

  33. Hu H, Wachs IE (1995) J Phys Chem 99:10911–10922

    Article  CAS  Google Scholar 

  34. Centi G (1993) Catal Today 16:5–26

    Article  CAS  Google Scholar 

  35. Centi G, Trifiro F, Ebner JR, Franchetti VM (1988) Chem Rev 88:55–80

    Article  CAS  Google Scholar 

  36. Contractor R, Sleight A (1988) Catal Today 3:175–184

    Article  CAS  Google Scholar 

  37. Arpentinier P, Cavani F, Tri_r_o F (2001) The technology of catalytic oxidations. Editions Technip, Paris

    Google Scholar 

  38. Guliants VV, Benziger J, Sundaresan S, Wachs I, Jehng J-M, Roberts J (1996) Catal Today 28:275–295

    Article  CAS  Google Scholar 

  39. Guliants VV, Benziger J, Sundaresan S, Yao N, Wachs I (1995) Catal Lett 32:379–386

    Article  CAS  Google Scholar 

  40. Guliants VV, Holmes S, Benziger J, Heaney P, Yates D, Wachs IJ (2001) Mol Catal A 172:265–276

    Article  CAS  Google Scholar 

  41. Busca G, Cavani F, Centi G, Trifiro F (1986) J Catal 99:400–414

    Article  CAS  Google Scholar 

  42. Azuma M, Saito T, Fujishiro Y, Hiroi Z, Takano M, Izumi F, Kamiyama T, Ikeda T, Narumi Y, Kindo K (1999) Phys Rev B 60:10145–10149

    Article  CAS  Google Scholar 

  43. Hiroi Z, Azuma M, Fujishiro Y, Saito T, Takano M, Izumi F, Kamiyama T, Ikeda T (1999) J Solid State Chem 146:369–379

    Article  CAS  Google Scholar 

  44. Koo H-J, Whangbo M-H (2000) Inorg Chem 39:3599–3604

    Article  CAS  Google Scholar 

  45. Leonowicz M, Johnson JW, Brody J Jr, Newsam HSJ (1985) J Solid State Chem 56:370–378

    Article  CAS  Google Scholar 

  46. Amoros P, Ibanez R, Martinez-Tamayo E, Beltran-Porter A, Beltran-Porter D, Villeneuve G (1989) Mater Res Bull 24:1347–1360

    Article  CAS  Google Scholar 

  47. Worzala H, Goetze T, Fratzky D, Meisel M (1998) Acta Crystallogr A 54:283–285

    Article  Google Scholar 

  48. Le Bail A, Ferey G, Amoros P, Beltran-Porter D (1989) Eur J Solid State Inorg Chem 26:419–426

    Google Scholar 

  49. Le Bail A, Ferey G, Amoros P, Beltran-Porter D, Villeneuve G (1989) J Solid State Chem 79:169–176

    Article  Google Scholar 

  50. Luciani S (2009) Structural changes and dynamic behaviour of vanadium oxide-based catalysts for gas-phase selective oxidations. Ph.D. thesis, Universitá di Bologna

  51. Gleaves JT, Ebner JR, Kuechler TC (1988) Cat Rev 30:49–116

    Article  CAS  Google Scholar 

  52. Cavani F, Ligi S, Monti T, Pierelli F, Trifiro F, Albonetti S, Mazzoni G (2000) Catal Today 61:203–210

    Article  CAS  Google Scholar 

  53. Abon M, Bere K, Tuel A, Delichere P (1995) J Catal 156:28–36

    Article  CAS  Google Scholar 

  54. Hutchings GJ, Kiely CJ, Sananes-Schulz MT, Burrows A, Volta JC (1998) Catal Today 40:273–286

    Article  CAS  Google Scholar 

  55. Ait-Lachgar K, Tuel A, Brun M, Herrmann J, Kra_t J, Martin J, Volta J, Abon M (1998) J Catal 177:224–230

    Article  CAS  Google Scholar 

  56. Ben Abdelouahab G, Volta J, Olier R (1994) J Catal 148:334–340

    Article  CAS  Google Scholar 

  57. Hodnett B (1987) Catal Today 1:475–476

    Article  Google Scholar 

  58. Vedrine JC, Millet JMM, Volta JC (1989) Faraday Discuss Chem Soc 87:207–213

    Article  CAS  Google Scholar 

  59. Li J, Lashier M, Schrader G, Gerstein BC (1991) Appl Catal 73:83–95

    Article  CAS  Google Scholar 

  60. Guilhaume N, Roullet M, Pajonk G, Grzybowska B, Volta J (1992) Studies in surface science and catalysis. In: Ruiz P, Delmon B (eds) New developments in selective oxidation by heterogeneous catalysis, vol 72. Elsevier, New York, pp 255–265

    Chapter  Google Scholar 

  61. Girgsdies F, Ressler T, Schlögl R, Dong W-S, Budroni G, Conte M, Bartley JK, Hutchings GJ, Wolf G-U, Schneider M (2006) New contributions to the structural chemistry of vanadyl orthophosphate VOPO4, poster presented at XXXIX. Jahrestreffen Deutscher Katalytiker

  62. Bordes E, Johnson J, Raminosona A, Courtine P (1985) Mater Sci Monogr B 28:887–892

    Google Scholar 

  63. Bordes E (1987) Catal Today 1:499–526

    Article  CAS  Google Scholar 

  64. Moser T, Schrader GJ (1987) Catal 104:99–108

    Article  CAS  Google Scholar 

  65. Lashier M, Moser T, Schrader G (1990) Studies in surface science and catalysis. In: Centi G, Trifiro F (eds) New developments in selective oxidation, vol 55. Elsevier, New York, pp 573–583

    Chapter  Google Scholar 

  66. Bordes E, Courtine PJ (1985) Chem Soc Chem Commun 294–296

  67. Haber J, Kozlowska A, Koz lowski R (1986) J Catal 102:52–63

    Article  CAS  Google Scholar 

  68. Koranne M, Goodwin J, Marcelin G (1994) J Catal 148:369–377

    Article  CAS  Google Scholar 

  69. Gruene P, Wolfram T, Pelzer K, Schlögl R, Trunschke A (2010) Catal Today 157:137–142

    Article  CAS  Google Scholar 

  70. Gao X, Ruiz P, Xin Q, Guo X, Delmon B (1994) J Catal 148:56–67

    Article  CAS  Google Scholar 

  71. Tessier L, Bordes E, Gubelmann-Bonneau M (1995) Catal Today 24:335–340

    Article  CAS  Google Scholar 

  72. Wachs IE, Weckhuysen BM (1997) Appl Catal A 157:67–90

    Article  CAS  Google Scholar 

  73. Katzumoto K, Marquis DM (1979) Method of preparing v(IV)phosphate composition with high intrinsic surface area. Chevron, US4132670

    Google Scholar 

  74. Coelho AA (2007) TOPAS—academic version 4.1

  75. Villars P (2015) K. C. Pearson’s crystal data: crystal structure database for inorganic compounds. VPP: 1812726, VHP: 1811410, αI-VOPO4: 1100582, VO(PO3)3, p 378770

  76. ICSD, Inorganic crystal structure database, Karlsruhe FIZ, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen. γ-VOPO4: 415213, δ-VOPO4: 420073, V(PO3)3: 306460

  77. Igor Pro - version 6.3.7.2, 2014

  78. Cornaglia L, Lombardo E (1995) Appl Catal A 127:125–138

    Article  CAS  Google Scholar 

  79. Biesinger MC, Lau LW, Gerson AR, Smart RS (2010) Appl Surf Sci 257:887–898

    Article  CAS  Google Scholar 

  80. Weiguny J, Storck S, Duda M, Dobner C (2002) Catalyst-precursor for the production of maleic acid anhydride and method for the production thereof, BASF; WO03078058 (A1)

  81. Volta JCCR (2000) Acad Sci Ser IIc 3:717–723

    CAS  Google Scholar 

  82. Coulston G, Thompson E, Herron N (1996) J Catal 163:122–129

    Article  CAS  Google Scholar 

  83. Waugh K, Taufiq-Yap Y-H (2003) Catal Today 81:215–225

    Article  CAS  Google Scholar 

  84. Delmon B (2006) Catal Today 117:69–74

    Article  CAS  Google Scholar 

  85. Kleimenov E, Bluhm H, Hävecker M, Knop-Gericke A, Pestryakov A, Teschner D, Lopez-Sanchez J, Bartley J, Hutchings G, Schögl R (2005) Surf Sci 575:181–188

    Article  CAS  Google Scholar 

  86. Silversmit G, Depla D, Poelman H, Marin GB, Gryse RD (2004) J Electron Spectrosc Relat Phenom 135:167–175

    Article  CAS  Google Scholar 

  87. Bond GC, Flamerz S (1989) Appl Catal 46:89–102

    Article  CAS  Google Scholar 

  88. Andersson A, Andersson SLT (1985) Solid state chemistry in catalysis. American Chemical Society, Washington, Chap. 9, pp 121–142

    Book  Google Scholar 

  89. Shimoda T, Okuhara T, Misono M (1985) Bull Chem Soc Jpn 58:2163–2171

    Article  CAS  Google Scholar 

  90. Batis N, Batis H, Ghorbel A, Vedrine J, Volta J (1991) J Catal 128:248–263

    Article  CAS  Google Scholar 

  91. Garbassi F, Bart J, Tassinari R, Vlaic G, Lagarde P (1986) J Catal 98:317–325

    Article  CAS  Google Scholar 

  92. Matsuura I (1984) In: Proceedings of the 8th international congress on catalysis, Berlin, p 473

  93. Conte M, Budroni G, Bartley JK, Taylor SH, Carley AF, Schmidt A, Murphy DM, Girgsdies F, Ressler T, Schlögl R, Hutchings G (2006) J Sci 313:1270–1273

    Article  CAS  Google Scholar 

  94. Hutchings GJ, Lopez-Sanchez J, Bartley JK, Webster JM, Burrows A, Kiely CJ, Carley AF, Rhodes C, Hävecker M, Knop-Gericke A, Mayer RW, Schlögl R, Volta JC, Poliakov M (2002) J Catal 208:197–210

    Article  CAS  Google Scholar 

  95. Knözinger H (1996) Catal Today 32:71–80

    Article  Google Scholar 

  96. Twu J, Dutta PK (1990) J Catal 124:503–510

    Article  CAS  Google Scholar 

  97. Griffith WP (1967) J Chem Soc A 905–908

  98. Ebner J, Thompson M (1993) Catal Today 16:51–60

    Article  CAS  Google Scholar 

  99. Diedenhoven J, Reitzmann A, Mestl G, Turek T (2012) Chem Ing Tech 84:517–523

    Article  CAS  Google Scholar 

  100. Lesser D, Mestl G, Turek T (2016) Appl Catal A 510:1–10

    Article  CAS  Google Scholar 

  101. Mestl G, Lesser D, Turek T (2016) Top Catal 59:1533–1544

    Article  CAS  Google Scholar 

  102. Lesser D, Mestl G, Turek T (2017) Chem Eng Sci 172:559–570

    Article  CAS  Google Scholar 

  103. Cavani F, Luciani S, Esposti ED, Cortelli C, Leanza R (2010) Chem Eur J 16:1646–1655

    Article  CAS  Google Scholar 

  104. Cavani F, De Santi D, Luciani S, Löfberg A, Bordes-Richard E, Cortelli C, Leanza R (2010) Appl Catal A 376:66–75

    Article  CAS  Google Scholar 

  105. Girgsdies F, Schneider M, Brückner A, Ressler T, Schlögl R (2009) Solid State Sci 11:1258–1264

    Article  CAS  Google Scholar 

  106. Kiely CJ, Burrows A, Hutchings GJ, Bere KE, Volta J-C, Tuel A, Abon M (1996) Faraday Discuss 105:103–118

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Mestl.

Additional information

The paper was handled by EIC Prof. H. J. Freund, since one of the guest editors is an author. The paper was accepted without revision.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böcklein, S., Mestl, G., Auras, S.V. et al. On the Correlation of Structure and Catalytic Performance of VPO Catalysts. Top Catal 60, 1682–1697 (2017). https://doi.org/10.1007/s11244-017-0847-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0847-4

Keywords

Navigation