Skip to main content
Log in

Kinetic and mechanistic investigation into the influence of substituents on the substitution reactions of Pt(II) NCN-donor complexes

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The substitution kinetics of cyclometallated platinum(II) complexes [PtL 1 Cl] (L 1 = 1,3-di(2-pyridyl)benzene), [PtL 2 Cl] (L 2 = 3,5-di(2-pyridinyl)-fluorobenzene), [PtL 3 Cl] (L 3 = 2,4-di(2-pyridinyl)-fluorobenzene) and [PtL 4 Cl] (L 4 = 3,5-di(2-pyridinyl)-toluene) with neutral nitrogen-donor nucleophiles imidazole, 1-methylimidazole, 1,2-dimethylimidazole, pyrazole and 1,2,4-triazole were investigated under pseudo-first-order conditions in methanol solution with an ionic strength of 0.1 M. The rate of substitution of the chloride ligand was studied as a function of nucleophile concentration and temperature using stopped-flow spectrophotometric techniques. The observed pseudo-first-order rate constants, k obs, for the substitution reactions obeyed the rate law k obs = k 2[Nu]. The reactivity of these complexes follows the order PtL 2 Cl > PtL 3 Cl > PtL 4 Cl > PtL 1 Cl. The lability of the chloride ligand is influenced by the extent of π-backbonding and also by the σ-trans effect. The reactivity of the nucleophiles depends on their basicity, inductive effect and steric hindrance. Second-order kinetics and negative activation entropies support an associative substitution mechanism. The experimental data are supported by the results of DFT calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Scheme 3
Fig. 3

Similar content being viewed by others

References

  1. Vicente J, Arcas A (2005) Coord Chem Rev 249:1135

    Article  CAS  Google Scholar 

  2. Hubbard CD, van Eldik R (2007) J Coord Chem 60:1

    Article  CAS  Google Scholar 

  3. Mambanda A, Jaganyi D (2011) Dalton Trans 40:79

    Article  CAS  Google Scholar 

  4. Hochreuther S, Puchta R, van Eldik R (2011) Inorg Chem 50(24):12747

    Article  CAS  Google Scholar 

  5. Mambanda A, Jaganyi D (2012) Dalton Trans 41:908

    Article  CAS  Google Scholar 

  6. Jaganyi D, Reddy D, Gartenbach JA, Hofmann A, van Eldik R (2004) Dalton Trans 2:299

  7. Reddy D, Jaganyi D (2008) Dalton Trans 47:6742

  8. Ongoma P, Jaganyi D (2012) Dalton Trans 41:10724

    Article  CAS  Google Scholar 

  9. Jaganyi D, de Boer KL, Gertenbach JA, Perils J (2008) Int J Chem Kinet 808

  10. Plutino MR, Scolaro LM, Romeo R, Grassi A (2000) Inorg Chem 39:2712

    Article  CAS  Google Scholar 

  11. Romeo R, Plutino MR, Scolaro LM, Stoccoro S, Minghetti G (2000) Inorg Chem 39:4749

    Article  CAS  Google Scholar 

  12. Jaganyi D, Hofmann A, van Eldik R (2001) Angew Chem Int Ed 40:1680

    Article  CAS  Google Scholar 

  13. Wendt OW, Oskarsson A, Liepold JG, Elding LI (1997) Inorg Chem 36:4514

    Article  CAS  Google Scholar 

  14. Alibrandi G, Minniti D, Scolar LM, Romeo R (1988) Inorg Chem 27:318

    Article  CAS  Google Scholar 

  15. Wendt OF, Elding LI (1997) Dalton Trans 24:4725

  16. Hofmann A, Dahlenburg L, van Eldik R (2003) Inorg Chem 42:6528

    Article  CAS  Google Scholar 

  17. Banerjee P (1999) Coord Chem Rev 190(192):19

    Article  Google Scholar 

  18. Sigel A, Sigel H (1996) Metal ions in biological systems. Marcel Dekker Inc, New York, p 393

    Google Scholar 

  19. Sundberg RJ, Martin RB (1974) Chem Rev 74:471

    Article  CAS  Google Scholar 

  20. van Zutphen V, Pantoja E, Soriano R, Soro C, Tooke DM, Spek AL, van Dulk H, Brouwer J, Reedijk J (2006) Dalton Trans 8:1020

    Article  Google Scholar 

  21. Lakomska I, Kooijman H, Spek AL, Shen WZ, Reedijk J (2009) Dalton Trans 48:10736

    Article  Google Scholar 

  22. Mambanda A, Jaganyi D, Hochreuther S, van Eldik R (2010) Dalton Trans 39:3595

    Article  CAS  Google Scholar 

  23. Bugarčić ŽD, Nandibewoor ST, Hamza MSA, Heinemann F, van Eldik R (2006) Dalton Trans 24:2984

  24. Joule JA, Smith GF (1972) Heterocyclic chemistry. Chapman and Hall, London, pp 1–23

    Google Scholar 

  25. Bugarčić ŽD, Rosić J, Petrović BV, Summa N, Puchta R, van Eldik R (2007) J Biolog Inorg Chem 12:1141

    Article  Google Scholar 

  26. Bogojeski J, Burgačić ŽD (2011) Transition Met Chem 36:73

    Article  CAS  Google Scholar 

  27. Soldatović T, Bugarčić ŽD (2005) J Inorg Chem 99:1472

    Google Scholar 

  28. Pitteri B, Bortoluzzi M (2006) Polyhedron 25:2698

    Article  CAS  Google Scholar 

  29. Carlsen L, Egsgaard H, Anderson JR (1979) Anal Chem 51:1593

  30. Williams JAG, Beeby A, Davies ES, Weinstein JA, Wilson C (2003) Inorg Chem 42:8609

    Article  CAS  Google Scholar 

  31. Wang Z, Turner E, Mahoney V, Madakuni S, Groy T, Li J (2010) Inorg Chem 49(24):11276

    Article  CAS  Google Scholar 

  32. Cárdens DJ, Echavarren AM, de Arellano AMC (1999) Organometallics 18:3337

    Article  Google Scholar 

  33. Appleton TG, Hall JR, Ralph SF, Thomson CSM (1984) Inorg Chem 23:3521

    Article  CAS  Google Scholar 

  34. Origin 7.5™ SRO, v7.5714 (B5714) (2003) Origin Lab Corporation, Northamption, One, Northamption, MA, 01060, USA

  35. Hay PJ, Wadt WR (1985) Chem Phys 82:270

    CAS  Google Scholar 

  36. Becke AD (1985) Chem Phys 82:270

    Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyvev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewsi VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foesman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A. I. Gaussian Inc., Wallingford

    Google Scholar 

  38. Katritzky R, Rees CW (1984) Comprehensive heterocyclic chemistry, vol 5. Pergamon Press, Oxford, pp 169–189

  39. Tobe ML, Burgess J (1991) Inorganic reaction mechanisms. Addison Wesley Longman Inc, Essex Ch 3

    Google Scholar 

  40. Laidler KJ, Meiser H (1999) Physical Chemistry, 3rd edn. Houghton Mifflin, Boston pp 394–395

  41. Hofmann A, Jaganyi D, Munro OQ, Liehr G, van Eldik R (2003) Inorg Chem 42:1688

    Article  CAS  Google Scholar 

  42. Schmȕlling M, Grove DM, van Koten G, van Eldik R, Veldman N, Spek AL (1996) Organometallics 15:1384

    Article  Google Scholar 

  43. Kinunda G, Jaganyi D (2014) Transition Met Chem 39:451

    Article  CAS  Google Scholar 

  44. Shaira A, Reddy D, Jaganyi D (2013) Dalton Trans 42:8426

    Article  CAS  Google Scholar 

  45. Reddy D, Akerman KJ, Akerman MP, Jaganyi D (2011) Transition Met Chem 36:595

    Article  Google Scholar 

  46. Bugarčić ŽD, Petrović B, Zangrando E (2004) Inorg Chim Acta 357:2650

    Article  Google Scholar 

  47. Rosić J, Petrović B, Djuran MI, Bugarčić ŽD (2007) Monatsh Chem 138:1

    Article  Google Scholar 

  48. Otto S, Elding LI (2002) Dalton Trans 11:2354

  49. Helm L, Elding LI, Merbach AE (1984) Helv Chim Acta 67:1453

    Article  CAS  Google Scholar 

  50. Helm L, Elding LL, Merbach AE (1985) Inorg Chem 24:1719

    Article  CAS  Google Scholar 

  51. Stochel G, van Eldik R (1999) Coord Chem Rev 187:329

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the University of KwaZulu-Natal and the National Research Foundation (NRF, Pretoria).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deogratius Jaganyi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 173 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papo, T.R., Jaganyi, D. Kinetic and mechanistic investigation into the influence of substituents on the substitution reactions of Pt(II) NCN-donor complexes. Transition Met Chem 40, 53–60 (2015). https://doi.org/10.1007/s11243-014-9889-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-014-9889-7

Keywords

Navigation