Skip to main content
Log in

A kinetic study of aqua ligand substitution in dinuclear Pt(II) complexes containing four non-coplanar pyridine ligands

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Substitution reactions of the aqua ligands from azine-bridged dinuclear platinum(II) complexes of the type [{cis-Pt(py)2(OH2)} 2(μ-pzn)](ClO4)4 [pzn = pyrazine (Pt-PZN), 2,3-dimethylpyrazine (Pt-2,3PZN), 2,5-dimethylpyrazine (Pt-2,5PZN) or 2,6-dimethylpyrazine (Pt-2,6PZN)] by thiourea nucleophiles were investigated under pseudo first-order conditions as a function of concentration and temperature using the stopped-flow technique. The experimental results are discussed in reference to structures obtained by DFT calculations. The results are in good agreement with the pKa values of the complexes as well as DFT calculations. Compared to [{cis/trans-Pt(NH3)2(OH2)} 2(μ-pzn)](ClO4)4, the complexes in this series react faster by a factor of 10 or 23 respectively due to the presence of pyridine rings, which forces the geometry to allow π-back bonding to take place such that the electrons from the metal centres are accepted to the empty π*-orbitals of the pyridine subunits. The reactivity of the nucleophile is sterically dependent, with N,N,N′,N′-tetramethylthiourea reacting three times slower than thiourea. In all complexes and for both substitution steps, the mode of activation remains associative in nature.

Graphical Abstract

The presence of pyridine rings in [{cis-Pt(py)2(OH2)} 2(μ-pzn)](ClO4)4 where py = pyridine, pzn = pyrazine (Pt-PZN), 2,3-dimethylpyrazine (Pt-2,3PZN), 2,5-dimethylpyrazine (Pt-2,5PZN) and 2,6-dimethylpyrazine (Pt-2,6PZN) allows the substitution reactions by thiourea nucleophiles to proceed faster by a factor of 10 than [{cis-Pt(NH3)2(OH2)} 2(μ-pzn)](ClO4)4 through π-back bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 4

Similar content being viewed by others

References

  1. Mambanda A, Jaganyi D, Hochreuther S, van Eldik R (2010) Dalton Trans 39:3595

    Article  CAS  Google Scholar 

  2. Mambanda A, Jaganyi D (2012) Dalton Trans 41:908

    Article  CAS  Google Scholar 

  3. Hochreuther S, van Eldik R (2012) Inorg Chem 51:3025

    Article  CAS  Google Scholar 

  4. Hochreuther S, Puchta R, van Eldik R (2011) Inorg Chem 50:8984

    Article  CAS  Google Scholar 

  5. Soldatović T, Jovanović S, Bugarčić ŽD, van Eldik R (2012) Dalton Trans 41:876

    Article  Google Scholar 

  6. Hochreuther S, Puchta R, van Eldik R (2011) Inorg Chem 50:12747

    Article  CAS  Google Scholar 

  7. Reddy D, Jaganyi D (2011) Int J Chem Kinet 43:161

    Article  CAS  Google Scholar 

  8. Jaganyi D, Munisamy VM, Reddy D (2006) Int J Chem Kinet 38(3):202

    Article  CAS  Google Scholar 

  9. Ertürk H, Hofmann A, Puchta R, van Eldik R (2007) Dalton Trans 2295

  10. Ertürk H, Maigut J, Puchta R, van Eldik R (2008) Dalton Trans 2759

  11. Hofmann A, van Eldik R (2003) Dalton Trans 2979

  12. Ertürk H, Puchta R, van Eldik R (2009) Eur J Inorg Chem 1334

  13. Ongoma P, Jaganyi D (2014) Trans Met Chem 39:407

    Article  CAS  Google Scholar 

  14. Jaganyi D, Ongoma P (2013) Dalton Trans 42:2724

    Article  Google Scholar 

  15. Zou Y, Van Houten B, Farrell N (1993) Biochemistry 32:9632

    Article  CAS  Google Scholar 

  16. Farrell N, Appleton TG, Qu Y, Roberts JD, Soares Fontes AP, Skov KA, Wu P, Zou Y (1995) Biochemistry 34:15480

    Article  CAS  Google Scholar 

  17. Kasparková J, Novaková O, Marini V, Najajreh Y, Gibson D, Perez J-M, Brabec V (2003) J Biol Chem 278(48):47516

    Article  Google Scholar 

  18. Kalinowska-Lis U, Ochocki J, Matlawska-Wasowska K (2008) Coord Chem Rev 252:1328

    Article  CAS  Google Scholar 

  19. Farrer NJ, Woods JA, Salassa L, Zhao Y, Robinson KS, Clarkson G, Mackay FS, Sadler PJ (2010) Angew Chem Int Ed 49:8905

    Article  CAS  Google Scholar 

  20. Hollis LS, Amundsen AR, Stern EW (1989) J Med Chem 32:128

    Article  CAS  Google Scholar 

  21. Qu Y, Farrell N (1992) Inorg Chem 31:930

    Article  CAS  Google Scholar 

  22. Jansen BAJ, van der Zwan J, den Dulk H, Brouwer J, Reedijk J (2001) J Med Chem 44:245

    Article  CAS  Google Scholar 

  23. Origin7.5™ SRO, v7.5714 (B5714), Origin Lab Corporation, Northampton, One, Northampton, MA, 01060, USA, 2003

  24. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  25. Wadt WR, Hay PJ (1985) J Chem Phys 82:284

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford

  27. Barone V, Cossi M (1995) J Phys Chem A 102

  28. Cossi M, Scalmani G, Rega N, Barone V (2003) J Comput Chem 24:669

    Article  CAS  Google Scholar 

  29. Lee G-Y, Jun M-S (2001) Bull Korean Chem Soc 22(1):11

    CAS  Google Scholar 

  30. Eyring H (1935) J Chem Phys 3:107

    Article  CAS  Google Scholar 

  31. Mebi CA (2011) J Chem Sci 123(5):727

    Article  CAS  Google Scholar 

  32. Jaramillo P, Domingo LR, Pérez P (2006) www.captura.uchile.cl/jspui/bitstream/2250/5781/1/Jaramillo_P.pdf

  33. Cedillo A, Contreras R (2012) J Mex Chem Soc 56(3):257

    CAS  Google Scholar 

  34. Parr RG, Szentpály LV, Liu S (1922) J Am Chem Soc 1999:121

    Google Scholar 

  35. Parthasarathi R, Subramanian V, Roy DR, Chattaraj PK (2004) Bioorg Med Chem 12:5533

    Article  CAS  Google Scholar 

  36. Katritzky AR, Pozharski AF (2000) Handbook of heterocyclic chemistry, 2nd edn. Elsevier, Pergamon, pp 177–178

    Google Scholar 

  37. Hofmann A, Jaganyi D, Munro OQ, Leihr G, van Eldik R (2003) Inorg Chem 42:1688

    Article  CAS  Google Scholar 

  38. Jaganyi D, Hofmann A, van Eldik R (2001) Angew Chem Int Ed 40:1680

    Article  CAS  Google Scholar 

  39. Jaganyi D, Reddy D, Gertenbach J-A, Hofmann A, van Eldik R (2004) Dalton Trans 299

  40. Schmülling M, Grove DM, van Koten G, van Eldik R, Veldman N, Spek AL (1996) Organometallics 15:1384

    Article  Google Scholar 

  41. Schiessl WC, Summa NK, Weber CF, Gubo S, Dücker-Benfer C, Puchta R, Eikem Hommes NJR, van Eldik R (2005) Z Anorg Allg Chem 631:2812

    Article  CAS  Google Scholar 

  42. Field JS, Gertenbach J-A, Haines RJ, Munro OQ, McMillin DR (2007) Z Naturforsch 62:447

    CAS  Google Scholar 

  43. Jaganyi D, Pantoja E, Gallipoli A, van Zutphen S, Komeda S, Reddy D, Lutz M, Tooke DM, Spek AL, Navarro-Ranninger C, Reedijk J (1955) J Inorg Biochem 2006:100

    Google Scholar 

  44. Hofmann A, Dahlernburg L, van Eldik R (2003) Inorg Chem 42:6528

    Article  CAS  Google Scholar 

  45. Pasini A, Rigamonti L, Forni A, Manassero M, Manassero C (2010) Inorg Chem 49:123

    Article  Google Scholar 

  46. Jaganyi D, Tiba F (2003) Transition Met Chem 28:803

    Article  CAS  Google Scholar 

  47. Reddy D, Jaganyi D (2006) Transition Met Chem 31:792

    Article  CAS  Google Scholar 

  48. Tobe ML, Burgess J (1999) Inorganic reaction mechanisms, Addison Wiley, Longman, Ltd., Essex, pp 30–33, 70–112

Download references

Acknowledgments

The authors thank the University of Dar es Salaam (Tanzania) and University of KwaZulu-Natal (South Africa) for financial support to Grace Kinunda.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deogratius Jaganyi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 968 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinunda, G., Jaganyi, D. A kinetic study of aqua ligand substitution in dinuclear Pt(II) complexes containing four non-coplanar pyridine ligands. Transition Met Chem 39, 939–949 (2014). https://doi.org/10.1007/s11243-014-9879-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-014-9879-9

Keywords

Navigation