Skip to main content
Log in

Linear and Weakly Nonlinear Stability Analyses of Two-Dimensional, Steady Brinkman–Bénard Convection Using Local Thermal Non-equilibrium Model

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Effect of local thermal non-equilibrium (LTNE) on onset of Brinkman–Bénard convection and on heat transport is investigated. Rigid–rigid and free–free, isothermal boundaries are considered for investigation. The assumption of LTNE leads to an ‘advanced onset’ situation compared to that predicted by the local thermal equilibrium (LTE) assumption. This results in the ‘enhanced heat transport’ situation in the problem. Asymptotic analysis for small and large values of inter-phase heat transfer coefficient is also carried out on critical Rayleigh number, critical wave number and Nusselt number. In respect of boundary influences on onset and heat transport, it is found that classical results hold even under the LTNE assumption. The other parameters’ influences on onset and heat transport are qualitatively similar in LTNE and LTE cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(A,B,C\) :

Amplitudes of linear regime (m)

\(c_\mathrm{p}\) :

Specific heat at constant pressure (Jkg\(^{-1}\mathrm{K}^{-1}\))

d :

Channel depth (m)

DE :

Amplitudes of nonlinear regime (m)

\(\mathbf {g}\) :

Acceleration due to gravity (ms\(^{-2}\))

h :

Inter-phase heat transfer coefficient (Wm\(^{-2}\mathrm{K}^{-1}\))

H :

Dimensionless inter-phase heat transfer coefficient

k :

Wave number in the x direction (m\(^{-1}\))

K :

Permeability (m\(^{2}\))

P :

Pressure (kgm\(^{-1}\mathrm{s}^{-2}\))

Pr :

Prandtl number

\(\mathbf {q}\) :

Filtration velocity or Darcy velocity (ms\(^{-1}) \)

Ra :

Thermal Rayleigh number

t :

Time (s)

T :

Temperature (K)

u :

Horizontal velocity component (ms\(^{-1}\))

w :

Vertical velocity component (ms\(^{-1}\))

xz :

Cartesian coordinate

XZ :

Dimensionless coordinates

\(\alpha \) :

Thermal expansion coefficient (K\(^{-1}\))

\(\gamma \) :

Porosity-modified ratio of thermal conductivities

\(\Gamma \) :

Ratio of thermal diffusivities

\(\Lambda \) :

Viscosity ratio

\(\kappa \) :

Thermal conductivity (Wm\(^{-1}\mathrm{K}^{-1}\))

\(\mu \) :

Dynamic viscosity (kgm\(^{-1}\mathrm{s}^{-1}\))

\(\mu ^{\prime }\) :

Effective dynamic viscosity (kgm\(^{-1}\mathrm{s}^{-1}\))

\(\phi \) :

Porosity (\(0<\phi <1\))

\(\Psi \) :

Dimensionless stream function

\(\rho \) :

Density (kgm\(^{-3}\))

\(\sigma ^2\) :

Inverse Darcy number or porous parameter

\(\tau \) :

Dimensionless time

\(\Theta \) :

Dimensionless temperature

0:

Reference value

b :

Basic state

c :

Critical

FF:

Free–free

l :

Liquid

LTE:

Local thermal equilibrium

LTNE:

Local thermal non-equilibrium

RR:

Rigid–rigid

s :

Solid

References

  • Banu, N., Rees, D.A.S.: Onset of Darcy - Bénard convection using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 45, 2221–2228 (2002)

    Article  Google Scholar 

  • Barletta, A., Celli, M., Lagziri, H.: Instability of a horizontal porous layer with local thermal non-equilibrium: effects of free surface and convective boundary conditions. Int. J. Heat Mass Transf. 89, 75–89 (2015)

    Article  Google Scholar 

  • Barletta, A., Rees, D.A.S.: Local thermal non-equilibrium effects in the Bénard instability with isoflux boundary conditions. Int. J. Heat Mass Transf. 55, 384–394 (2012)

    Article  Google Scholar 

  • Bhadauria, B.S., Agarwal, S.: Convective transport in a nanofluid saturated porous layer with thermal non equilibrium model. Transp. Porous Med. 88, 107–131 (2011)

    Article  Google Scholar 

  • Celli, M., Barletta, A., Storesletten, L.: Local thermal non-equilibrium effects in the Bénard instability of a porous layer heated from below by a uniform flux. Int. J. Heat Mass Transf. 67, 902–912 (2013)

    Article  Google Scholar 

  • Celli, M., Lagziri, H., Bezzazi, M.: Local thermal non-equilibrium effects in the Horton–Rogers–Lapwood problem with a free surface. Int. J. Therm. Sci. 116, 254–264 (2017)

    Article  Google Scholar 

  • Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Oxford University Press, New York (1961)

    Google Scholar 

  • Dehghan, M., Valipour, M.S., Saedodin, S.: Perturbation analysis of the local thermal non-equilibrium condition in a fluid-saturated porous medium bounded by an iso-thermal channel. Transp. Porous Med. 102, 139–152 (2014)

    Article  Google Scholar 

  • Kaviany, M.: Principles of Heat Transfer in Porous Media. Springer, New York (2012)

    Google Scholar 

  • Lagziri, H., Barletta, A., Celli, M., Bezzazi, M.: The onset of Darcy–Bénard instability in a horizontal porous channel with a free surface using a thermal nonequilibrium model. In: MATEC Web of Conferences, vol. 83, p. 07003 (2016)

  • Lapwood, E.R.: Convection of a fluid in a porous medium. Proc. Camb. Philos. Soc. 44, 508–521 (1948)

    Article  Google Scholar 

  • Lee, J., Shivakumara, I.S., Mamatha, A.L.: Effect of nonuniform temperature gradients on thermogravitational convection in a porous layer using a thermal nonequilibrium model. J. Porous Med. 14, 659–669 (2011)

    Article  Google Scholar 

  • Malashetty, M.S., Shivakumara, I.S., Kulkarni, S.: The onset of Lapwood–Brinkman convection using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 48, 1155–1163 (2005a)

    Article  Google Scholar 

  • Malashetty, M.S., Shivakumara, I.S., Kulkarni, S.: The onset of convection in an anisotropic porous layer using a thermal non-equilibrium model. Transp. Porous Med. 60, 199–215 (2005b)

    Article  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V., Xiong, M.: Effect of local thermal non-equilibrium on thermally developing forced convection in a porous medium. Int. J. Heat Mass Transf. 45, 4949–4955 (2002)

    Article  Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, New York (2006)

    Google Scholar 

  • Nield, D.A.: A note on local thermal non-equilibrium in porous media near boundaries and interfaces. Transp. Porous Med. 95, 581–584 (2012)

    Article  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: Local thermal non-equilibrium and heterogeneity effects on the onset of convection in a layered porous medium. Transp. Porous Med. 102, 1–13 (2014)

    Article  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V., Barletta, A., Celli, M.: The onset of convection in a sloping layered porous medium: effects of local thermal non-equilibrium and heterogeneity. Transp. Porous Med. 114, 87–97 (2016)

    Article  Google Scholar 

  • Postelnicu, A., Rees, D.A.S.: The onset of Darcy–Brinkman convection in a porous layer using a thermal nonequlibrium model part I: stress free boundaries. Int. J. Energy Res. 27, 961–973 (2003)

    Article  Google Scholar 

  • Postelnicu, A.: The onset of a Brinkman convection using a thermal nonequilibrium model. Part II. Int. J. Therm. Sci. 47, 1587–1594 (2008)

    Article  Google Scholar 

  • Rees, D. A. S., Pop, I.: Local thermal non-equilibrium in porous medium convection. Transp. Porous Med. III. (ed D. B. Ingham, I. Pop) 147–173 (2005)

  • Rees, D.A.S., Bassom, A.P., Siddheshwar, P.G.: Local thermal non-equilibrium effects arising from the injection of a hot fluid into a porous medium. J. Fluid Mech. 594, 379–398 (2008)

    Article  Google Scholar 

  • Rudraiah, N., Siddheshwar, P.G., Masuoka, T.: Nonlinear convection in porous media: a review. J. Porous Media 6, 1–32 (2003)

    Article  Google Scholar 

  • Saravanan, S., Sivakumar, T.: Onset of thermovibrational filtration convection: departure from thermal equilibrium. Phys. Rev. E 84, 026307-1-13 (2011)

    Google Scholar 

  • Shivakumara, I.S., Lee, J., Mamatha, A.L., Ravisha, M.: Boundary and thermal non-equilibrium effects on convective instability in an anisotropic porous layer. J. Mech. Sci. Technol. 25, 911–921 (2011a)

    Article  Google Scholar 

  • Shivakumara, I.S., Lee, J., Vajravelu, K., Mamatha, A.L.: Effects of thermal nonequilibrium and non-uniform temperature gradients on the onset of convection in a heterogeneous porous medium. Int. Commun. Heat Mass Transf. 38, 906–910 (2011b)

    Article  Google Scholar 

  • Siddheshwar, P.G., Vanishree, R.K., Kanchana, C.: Study of Rayleigh–Bénard–Brinkman convection using LTNE model and coupled, real Ginzburg–Landau equations. WASET. Int. J. Mech. Aero. Ind. Mech. Manuf. Eng. 11, 1132–1139 (2017)

    Google Scholar 

  • Siddheshwar, P.G., Kanchana, C.: Unicellular unsteady Rayleigh–Bénard convection in Newtonian liquids and Newtonian nanoliquids occupying enclosures: new findings. Int. J. Mech. Sci. 131, 1061–1072 (2017)

    Article  Google Scholar 

  • Straughan, B.: Global nonlinear stability in porous convection with a thermal non-equilibrium model. Proc. R. Soc. Lond. A 462, 409–418 (2006)

    Article  Google Scholar 

  • Straughan, B.: Green–Naghdi fluid with non-thermal equilibrium effects. Proc. R. Soc. Lond. A 466, 2021–2032 (2010)

    Article  Google Scholar 

  • Straughan, B.: Convection with Local Thermal Non-Equilibrium and Microfluidic Effects. Springer, New York (2015)

    Book  Google Scholar 

  • Straus, J.M.: Large amplitude convection in porous media. J. Fluid Mech. 64, 51–63 (1974)

    Article  Google Scholar 

  • Sunil, S.P., Mahajan, A.: Onset of Darcy-Brinkman ferroconvection in a rotating porous layer using a thermal non-equilibrium model: a nonlinear stability analysis. Transp. Porous Media. 88, 421–439 (2011)

  • Vafai, K.: Handbook of Porous Media. CRC Press, London (2015)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for many useful comments which helped us to refine the paper to the present form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Siddheshwar.

Appendix

Appendix

1.1 Derivation of Ginzburg–Landau Equation from the Lorenz Model by the Method of Multiscales (Siddheshwar and Kanchana 2017)

To use the method of multiscales, we expand the amplitudes in terms of the small quantity \(\varepsilon \) as follows:

$$\begin{aligned} \left. \begin{aligned} A&=\varepsilon A_1+\varepsilon ^2 A_2+\varepsilon ^3 A_3+\cdots ,\\ B_1&=\varepsilon B_{11}+\varepsilon ^2 B_{12}+\varepsilon ^3 B_{13}+\cdots ,\\ D_1&=\varepsilon D_{11}+\varepsilon ^2 D_{12}+\varepsilon ^3 D_{13}+\cdots ,\\ C_1&=\varepsilon C_{11}+\varepsilon ^2 C_{12}+\varepsilon ^3 C_{13}+\cdots ,\\ E_1&=\varepsilon E_{11}+\varepsilon ^2 E_{12}+\varepsilon ^3 E_{13}+\cdots ,\\ r&= 1+\varepsilon ^2r_2, \end{aligned} \right\} , \end{aligned}$$
(66)

and a slow time scale may also be introduced as follows:

$$\begin{aligned} \tau ^*=\varepsilon ^2\tau . \end{aligned}$$
(67)

Substituting Eqs. (66)–(67) in Eq. (39), equating the coefficients of like powers of \(\varepsilon \) on either side of the equation, we get

Coefficient of \(\varepsilon \).

$$\begin{aligned} {L}{M^{(1)}}=0, \end{aligned}$$
(68)

where

$$\begin{aligned} L= & {} \left( \begin{array}{ccccc} -Fe_{1}\Lambda -\sigma ^2 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ Fe_2 \text {} &{}\quad -\delta ^2-H &{}\quad 0 &{}\quad \dfrac{H^2 \gamma }{\delta ^2+H \gamma } &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad -4 \pi ^2-H &{}\quad 0 &{}\quad \dfrac{H^2 \gamma }{4 \pi ^2+H \gamma } \\ 0 &{}\quad 1 &{}\quad 0 &{}\quad -1 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad -1 \end{array} \right) ,\\ M^{(i)}= & {} (A_i,B_{1i},D_{1i},C_{1i},E_{1i})^\mathrm{T}, \;\; (i=1, 2, 3). \end{aligned}$$

Solving Eq. (68), we get the solution of the first-order system as follows:

$$\begin{aligned} B_{11}= C_{11}=\frac{ \left( \gamma H+\delta ^2\right) Fe_{2} r_{0}}{\delta ^2 \left( \delta ^2+H+\gamma H\right) }A_{1},\;\;D_{11}= E_{11}=0. \end{aligned}$$
(69)

Coefficient of \(\varepsilon ^2\)

$$\begin{aligned} {L}{M^{(2)}}=[R_{21},\; R_{22},\; R_{23},\; R_{24},\; R_{25}]^\mathrm{T}, \end{aligned}$$
(70)

where

$$\begin{aligned} R_{21}= & {} 0,\;\; R_{22}= 0,\; R_{23}=-\frac{\left( \gamma H+\delta ^2\right) Fe_{2} r_{0} }{\delta ^2\left( \gamma H+H+\delta ^2\right) }A_{1}^2,\;\;R_{24}= 0,\;\; R_{25}= 0. \end{aligned}$$

Solving Eq. (70), we get the solution of the second-order system as follows:

$$\begin{aligned} A_{2}=B_{12}= C_{12}=0,\;\;D_{12}=E_{12}=\frac{\left( \gamma H+4 \pi ^2\right) \left( \gamma H+\delta ^2\right) Fe_{2} r_{0} }{4 \pi ^2 \delta ^2 \left( \gamma H+H+4 \pi ^2\right) \left( \gamma H+H+\delta ^2\right) }A_{1}^2. \end{aligned}$$

Coefficient of \(\varepsilon ^3\)

$$\begin{aligned} {L}{M^{(3)}}=[R_{31},\; R_{32},\; R_{33},\; R_{34},\; R_{35}]^\mathrm{T}, \end{aligned}$$
(71)

where

$$\begin{aligned} R_{31}= & {} \dfrac{1}{Pr}\dfrac{{A_1}}{\mathrm{d} \tau ^{*}},\;\; R_{32}= \dfrac{\mathrm{d} B_{11}}{\mathrm{d}\tau ^{*}}+A_1D_{12}-Fe_{2}r_2A_1, \\ R_{33}= & {} \dfrac{\mathrm{d} D_{11}}{\mathrm{d} \tau ^{*}}-A_{1} B_{12},\;\;R_{34}= \dfrac{\Gamma }{ \delta ^2+\gamma H}\dfrac{\mathrm{d} C_{11}}{\mathrm{d} \tau ^{*}},\;\; R_{35}= \dfrac{\Gamma }{4 \pi ^2+\gamma H}\dfrac{\mathrm{d} E_{11}}{\mathrm{d} \tau ^{*}}. \end{aligned}$$

The Fredholm solvability condition applied to the third-order system gives us the Ginzburg–Landau equation:

$$\begin{aligned} \dfrac{\mathrm{d}A_{1}(\tau ^*)}{\mathrm{d} \tau ^*}=\dfrac{Pr^*}{1+Pr^*}\left( P_{1}A_{1}(\tau ^*)-P_{2}A_{1}(\tau ^*)^{3}\right) , \end{aligned}$$
(72)

where

$$\begin{aligned} P_{1}= & {} \frac{\delta ^2 \left( \delta ^2+ \gamma H\right) \left( \delta ^2+H+\gamma H\right) r_{2}}{P_{3}},\;\; P_{2}=\left( \frac{\left( \gamma H+4 \pi ^2\right) (\delta ^2+ \gamma H)^2}{4 \pi ^2 P_{3}\left( \gamma H+H+4 \pi ^2\right) }\right) ,\\ Pr^{*}= & {} \frac{P_{3} Fe_{2} r_{0}}{\delta ^4 \left( \delta ^2+H+ \gamma H\right) ^2}Pr,\;\; P_{3}=\delta ^4+\gamma ^2 H^2+\gamma H \left( \Gamma H+2 \delta ^2 \right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddheshwar, P.G., Siddabasappa, C. Linear and Weakly Nonlinear Stability Analyses of Two-Dimensional, Steady Brinkman–Bénard Convection Using Local Thermal Non-equilibrium Model. Transp Porous Med 120, 605–631 (2017). https://doi.org/10.1007/s11242-017-0943-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-017-0943-8

Keywords

Navigation