Skip to main content
Log in

High efficiency plant regeneration and genetic fidelity of regenerants by SCoT and ISSR markers in chickpea (Cicer arietinum L.)

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

High efficient and repeatable in vitro regeneration protocol was established from embryo axis, half-seed, axillary meristem, and cotyledonary node explants of chickpea. Various concentrations and combinations of various plant growth regulators (PGRs) were employed to induce multiple shoots, shoot elongation and rooting of shoots to obtain complete plantlets of chickpea. The pretreatment of seeds with 6-benzyl aminopurine (BAP) at 1.0 mg l−1 was found to significantly increase the multiple shoot regeneration from the all explants tested. Among three PGRs such as BAP, kinetin (KIN) and thidiazuron (TDZ) tested for multiple shoot induction; BAP at 2.0 mg l−1 produced the maximum number of shoots in all tested explants. The maximum number of shoots (48.80 shoots/explant) was attained from the embryo axis explant followed by half-seed (32.76 shoots/explant), axillary meristem (28.34 shoots/explant) and cotyledonary node explant (18.47 shoots/explant) on medium augmented with 2.0 mg l−1 BAP along with 0.05 mg l−1 Indole-3-butyric acid (IBA). The optimum percentage of shoot elongation response was recorded (96.68%) on medium fortified with IAA (0.05 mg l−1), GA3 (1.0 mg l−1) and BAP (1.0 mg l−1) with an average shoot length of 8.82 cm. The elongated shoots were successfully rooted in medium augmented with 2.0 mg l−1 IBA. The complete plants were acclimatized in the greenhouse with a survival rate of 72%. The plantlets regenerated from four explants appeared to be morphologically similar to mother plants. The genetic fidelity of in vitro regenerated plants was evaluated using Start Codon Targeted and Inter simple sequence repeats molecular markers. The in vitro regenerated plants from all four explants were found to be the true to type with their mother plant. The in vitro protocol presented in the study should offer as a feasible system for chickpea genetic transformation.

Key message

An efficient and reproducible in vitro regeneration protocol was established for chickpea. Application of different concentrations and combinations of PGRs was found to enhance multiple shoot induction, shoot elongation, rooting and acclimatization of in vitro regenerated plants in field conditions, and further evaluated genetic fidelity using molecular markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PGRs:

Plant growth regulators

SCoT:

Start codon targeted polymorphism

ISSR:

Inter simple sequence repeats

NAA:

1-Naphthalene acetic acid

IBA:

Indole-3-butyric acid

IAA:

Indole-3-acetic acid

BAP:

6-Benzyl amino purine

KIN:

Kinetin

TDZ:

Thidiazuron

GA3 :

Gibbelleric acid

References

  • Ajithan C, Vasudevan V, Sathish D, Sathish S, Krishnan V, Manickavasagam M (2019) The influential role of polyamines on the in vitro regeneration of pea (Pisum sativum L.) and genetic fidelity assessment by SCoT and RAPD markers. Plant Cell Tissue Org Cult 139(3):547–561

    Article  CAS  Google Scholar 

  • Amer A, Mohamed G, Pantaleo V, Leonetti P, Hanafy MS (2019) In vitro regeneration through organogenesis in Egyptian chickpea. Plant Biosystems. https://doi.org/10.1080/11263504.2018.1549616

    Article  Google Scholar 

  • Amutha S, Muruganantham M, Ganapathi A (2006) Thidiazuron induced high frequency axillary and adventitious shoot regeneration in Vigna radiata (L.)Wilczek. In Vitro Cell Dev Biol-Plant 42(1):26–30

    Article  CAS  Google Scholar 

  • Anwar F, Sharmila P, Saradhi PP (2008) An optimal protocol for in vitro regeneration, effect of rooting and stable transplantation of chickpea. Physiol Mol Biol Plant 14:329–335

    Article  CAS  Google Scholar 

  • Anwar F, Sharmila P, Pardha Saradhi P (2010) No more recalcitrant: chickpea regeneration and genetic transformation. Afr J Biotechnol 9(6):782–797

    Article  CAS  Google Scholar 

  • Arora A, Chawla HS (2005) Organogenic plant regeneration via callus induction in chickpea (Cicer arietinum L.) - role of genotypes, growth regulators and explants. Ind J Biotechnol 4(4):251–256

    CAS  Google Scholar 

  • Atif RM, Patat-Ochatt EM, Svabova L, Ondrej V, Klenoticova H, Jacas L, Griga M, Ochatt SJ (2013) Gene transfer in legumes. In: Luttge U, Beyschag W, Francis D, Cushman J (eds) Progress in botany 74. Springer-Verlag, Berlin, Heidelberg, pp 37–100

    Chapter  Google Scholar 

  • Babu GA, Vinoth A, Ravindhran R (2018) Direct shoot regeneration and genetic fidelity analysis in finger millet using ISSR markers. Plant Cell Tissue Org Cult 132(1):157–164

    Article  CAS  Google Scholar 

  • Batra P, Yadav NR, Sindhu A, Yadav RC, Chowdhury VK, Chowdhury JB (2002) Efficient protocol for in vitro direct plant regeneration in chickpea Cicer arietinum L. Indian J Expl Biol 40:600–602

    CAS  Google Scholar 

  • Bhattacharjee B, Mohan M, Nair S (2010) Transformation of chickpea: effect of genotype, explant, Agrobacterium-strain and composition of culture medium. Biol Plant 54(1):21–32

    Article  Google Scholar 

  • Cabo S, Ferreira L, Carvalho A, Martins-Lopes P, Martín A, Lima-Brito JE (2014) Potential of Start Codon Targeted (SCoT) markers for DNA fingerprinting of newly synthesized tritordeums and their respective parents. J Appl Genet 55(3):307–312

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti D, Sarkar A, Das S (2006) Efficient and rapid in vitro plant regeneration system or Indian cultivars of chickpea (Cicer arietinum L.). Plant Cell Tissue Org Cult 86:117–123

    Article  Google Scholar 

  • Chitra DSV, Padmaja G (2005) Shoot regeneration via direct organogenesis from in vitro derived leaves of mulberry using thidiazuron and 6-benzylaminopurine. Sci Hortic 106:593–602

    Article  CAS  Google Scholar 

  • Collard BC, Mackill DJ (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep 27(1):86

    Article  CAS  Google Scholar 

  • Considine MJ, Siddique KHM, Foyer CH (2017) Nature’s pulse power: legumes, food security and climate change. J Expl Bot 68(8):1815–1818

    Article  CAS  Google Scholar 

  • Croser JS, Clarke HJ, Siddique KHM, Khan TN (2003) Low-temperature stress: implications for chickpea (Cicer arietinum L.) improvement. Crit Rev Plant Sci 22(2):185–219

    Article  Google Scholar 

  • Daffala HH, Abdellatef E, Elhadi EA, Khalafalla MM (2011) Effect of growth regulators on in vitro morphogenic response of Boscia senegalensis (Pers.) Lam. Poir. using mature zygotic embryos explants. Biotechnol Res Int 10:1–8

    Article  CAS  Google Scholar 

  • Das A, Parida SK (2014) Advances in biotechnological applications in three important food legumes. Plant Biotechnol Rep 8:83–99

    Article  Google Scholar 

  • Das Bhowmik SS, Cheng AY, Long H, Tan GZH, Hoang TML, Karbaschi MR, Williams B, Higgins TJV, Mundree SG (2019) Robust genetic transformation system to obtain non-chimeric transgenic chickpea. Front Plant Sci 10:524

    Article  PubMed  PubMed Central  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • D'Silva I, D'Souza L (1992) In vitro propagation of Anacardium occidentale L. Plant Cell Tissue Organ Cult 29(1):1–6

    Article  CAS  Google Scholar 

  • Elayaraja D, Subramanyam K, Vasudevan V, Sathish S, Kasthurirengan S, Ganapathi A, Manickavasagam M (2019) Meta-Topolin (mT) enhances the in vitro regeneration frequency of Sesamum indicum (L.). Biocatal Agric Biotechnol 21:101320

    Article  Google Scholar 

  • FAO (2018) FAOSTAT Database. https://faostat.fao.org/site/567/default.aspx. Accessed 24 May 2018

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Gatti I, Guindon F, Bermejo C, Esposito A, Cointry E (2016) In vitro tissue culture in breeding programs of leguminous pulses: use and current status. Plant Cell Tissue Org Cult 127:543–559

    Article  CAS  Google Scholar 

  • Gaur PM, Thudi M, Samineni S, Varshney RK (2014) Advances in chickpea genomics. In: Gupta S, Nadarajan N, Gupta DS (eds) Legumes in Omics era. Springer Science-Business Media, New York, pp 73–94

    Chapter  Google Scholar 

  • Geetha N, Venkatachalam P, Prakash V, Lakshmi SG (1998) High frequency induction of multiple shoots and plant regeneration from seedling explants of pigeonpea (Cajanus cajan). Curr Sci 17:1036–1041

    Google Scholar 

  • Ghanti SK, Sujata KG, Rao MS (2009) The effect of phenyl acetic acid on shoot bud induction, elongation and rooting of chickpea. Biol Plant 53(4):779–783

    Article  CAS  Google Scholar 

  • Hada A, Krishnan V, Jaabir MSM, Kumari A, Jolly M, Praveen S, Sachdev A (2018) Improved Agrobacterium tumefaciens-mediated transformation of soybean [Glycine max (L.) Merr.] following optimization of culture conditions and mechanical techniques. In Vitro Cell Dev Biol Plant 54:672–688

    Article  CAS  Google Scholar 

  • Jacob C, Carrasco B, Schwember AR (2016) Advances in breeding and biotechnology of legume crops. Plant Cell Tissue Org Cult 127:561–584

    Article  CAS  Google Scholar 

  • Jain M, Misra G, Patel RK, Priya P, Jhanwar S et al (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:714–719

    Article  CAS  Google Scholar 

  • Jayanand B, Sudarsanam G, Sharma KK (2003) An efficient protocol for the regeneration of whole plants of chickpea (Cicer arietinum L.) by using axillary meristem explants derived from in vitro germinated seedlings. In Vitro Cell Dev Biol-Plant 39:171–179

    Article  Google Scholar 

  • Kumari PP, Singh S, Yadav S, Tran LSP (2018) Pretreatment of seeds with thidiazuron delimits its negative effects on explants and promotes regeneration in chickpea (Cicer arietinum L.). Plant Cell Tissue Organ Cult 133:103–114

    Article  CAS  Google Scholar 

  • Leonetti P, Accotto GP, Hanafy MS, Pantaleo V (2018) Viruses and phytoparasitic Nematodes of Cicer arietinum L.: biotechnological approaches in interaction studies and for sustainable control. Front Plant Sci 9:319. https://doi.org/10.3389/fpls.2018.00319

    Article  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Pathak MR, Hamzah RY (2008) An effective method of sonicated assisted Agrobacterium-mediated transformation of chickpea. Plant Cell Tissue Organ Cult 93:65–71

    Article  Google Scholar 

  • Pendli S, Rohela GK, Jogam P, Bylla P, Korra R, Thammidala C (2019) High frequency in vitro plantlet regeneration in Solanum trilobatum L., an important ethno-medicinal plant and confirmation of genetic fidelity of R1 plantlets by using ISSR and RAPD markers. Vegetos 32(4):508–520

    Article  Google Scholar 

  • Polisetty R, Patil P, Deveshwar JJ, Khetarpal S, Suresh K, Chandra R (1997) Multiple shoot induction by benzyladenine and complete plant regeneration from seed explants of chickpea (Cicer arietinum L.). Plant Cell Rep 16:565–571

    Article  CAS  PubMed  Google Scholar 

  • Rathore NS, Rai MK, Phulwaria M, Rathore N, Shekhawat NS (2014) Genetic stability in micropropagated Cleome gynandra revealed by SCoT analysis. Acta Physiol Plant 36(2):555–559

    Article  CAS  Google Scholar 

  • Raveendar S, Premkumar A, Sasikumar S, Ignacimuthu S, Agastian P (2009) Development of a rapid, highly efficient system of organogenesis in cowpea Vigna unguiculata (L.) Walp. S Afr J Bot 75:17–21

    Article  Google Scholar 

  • Rohela GK, Jogam P, Bylla P, Reuben C (2019) Indirect regeneration and assessment of genetic fidelity of acclimated plantlets by SCoT, ISSR, and RAPD markers in Rauwolfia tetraphylla L.: an endangered medicinal plant. BioMed Res Int. https://doi.org/10.1155/2019/3698742

    Article  PubMed  PubMed Central  Google Scholar 

  • Rohela GK, Jogam P, Shabnam AA, Shukla P, Abbagani S, Ghosh MK (2018) In vitro regeneration and assessment of genetic fidelity of acclimated plantlets by using ISSR markers in PPR-1 (Morus sp.): an economically important plant. Sci Hortic 241:313–321

    Article  CAS  Google Scholar 

  • Saeed T, Shahzad A, Sharma S (2019) Studies on single and double-layered biocompatible encapsulation of somatic embryos in Albizia lebbeck and genetic homogeneity appraisal among synseed derived lines through ISSR markers. Plant Cell Tissue Organ Cult. https://doi.org/10.1007/s11240-019-01738-9

    Article  Google Scholar 

  • Sanyal I, Singh AK, Amla DV (2003) Agrobacterium tumefaciens mediated transformation of chickpea (Cicer arietinum L.) using mature embryogenic axis and cotyledonary nodes. Indian J Biotechnol 2:524–532

    CAS  Google Scholar 

  • Sanyal I, Singh AK, Kaushik M, Amla DV (2005) Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) with Bacillus thuringiensis cry1Ac gene for resistance against pod borer insect Helicoverpa armigera. Plant Sci 168:1135–1146

    Article  CAS  Google Scholar 

  • Sathish D, Vasudevan V, Theboral J, Elayaraja D, Appunu C, Siva R, Manickavasagam M (2018) Efficient direct plant regeneration from immature leaf roll explants of sugarcane (Saccharum officinarum L.) using polyamines and assessment of genetic fidelity by SCoT markers. In Vitro Cell Dev Biol-Plant 54(4):399–412

    Article  CAS  Google Scholar 

  • Sharma KK, Lavanya M, Anjaiah V (2006) Agrobacterium-mediated production of transgenic pigeon pea (Cajanus cajan L. Millsp.) expressing the synthetic BtCry1AB gene. In Vitro Cell Dev Biol Plant 42:165–173

    Article  CAS  Google Scholar 

  • Singh SR, Dalal S, Singh R, Dhawan AK, Kalia RK (2013) Evaluation of genetic fidelity of in vitro raised plants of Dendrocalamus asper (Shult. & Shult. F.) Backer ex K. Heyne using DNA-based markers. Acta Physiol Plant 35:419–430

    Article  CAS  Google Scholar 

  • Srivastava J, Das A, Soren KR, Chaturvedi SK, Nadarajan N, Datta S (2012) Ontogeny of in vitro shoot organogenesis from axillary meristem explants in chickpea (Cicer arietinum L.). J Crop Sci Biotechnol 15(3):245–250

    Article  Google Scholar 

  • Sunil SP, Robinason JP, Balan SSK, Anandhaprabhakaran M, Balakrishnan V (2015) In vitro regeneration and induction of multiple shooting in Cicer arietinum L. using cotyledonary nodal explants. Afr J Biotechnol 14(13):1129–1138

    Article  CAS  Google Scholar 

  • Tang Y, Chen L, Li XM, Li J, Luo Q, Lai J, Li HX (2012) Effect of culture conditions on the plant regeneration via organogenesis from cotyledonary node of cowpea (Vigna unguiculata L. Walp). Afr J Biotechnol 11(14):3270–3275

    Article  CAS  Google Scholar 

  • Thakur J, Dwivedi MD, Sourabh P, Uniyal PL, Pandey AK (2016) Genetic homogeneity revealed using SCoT, ISSR and RAPD markers in micropropagated Pittosporum eriocarpum Roylean endemic and endangered medicinal plant. PLoS ONE 11(7):e0159050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tripathi L, Singh AK, Singh S, Singh R, Chaudhary S, Sanyal I, Amla DV (2013) Optimization of regeneration and Agrobacterium-mediated transformation of immature cotyledons of chickpea (Cicer arietinum L.). Plant Cell Tissue Organ Cult 113:513–527

    Article  CAS  Google Scholar 

  • Uncuoglu AA, Sarmah BK, Sharma KK, Bhatnagar-Mathur P, Ratnaparker MB, Pawar P, Rajnekar PK (2008) Chickpea. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants: transgenic legume grains and forages. Blackwell Pub Ltd, Oxford, pp 171–187

    Chapter  Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Nextgeneration sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    Article  CAS  PubMed  Google Scholar 

  • Vasudevan V, Subramanyam K, Elayaraja D, Karthik S, Vasudevan A, Manickavasagam M (2017) Assessment of the efficacy of amino acids and polyamines on regeneration of watermelon (Citrullus lanatus Thunb.) and analysis of genetic fidelity of regenerated plants by SCoT and RAPD markers. Plant Cell Tissue Organ Cult 130(3):681–687

    Article  CAS  Google Scholar 

  • Vemula S, Koppula K, Jogam P, Mohammed M (2019) In vitro high frequency multiplication and assessment of genetic fidelity of Corallocarpus epigaeus: an endangered medicinal plant. Vegetos. https://doi.org/10.1007/s42535-019-00085-6

    Article  Google Scholar 

  • Yadav IS, Singh NP (2012) An effective protocol for improved regeneration capacity of Kabuli chickpeas. Can J Plant Sci 92:1057–1064

    Article  Google Scholar 

  • Yadav R, Mehrotra M, Singh AK, Niranjan A, Singh R, Sanyal I, Lehri A, Pande V, Amla DV (2017) Improvement in Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) by the inhibition of polyphenolics released during wounding of cotyledonary node explants. Protoplasma 254:253–269

    Article  CAS  PubMed  Google Scholar 

  • Zhihui S, Tzitzikas M, Raemakers K, Zhengqiang M, Visser R (2009) Effect of TDZ on plant regeneration from mature seeds in pea (Pisum sativum). In Vitro Cell Dev Biol Plant 45:776–782

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Atomic Energy (DAE), Board of Research in Nuclear Sciences (BRNS), Government of India for financial assistance in the form of a project (DAE-BRNS No.2013/35/36/BRNS/1254, dt: 30.07.2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkataiah Peddaboina.

Ethics declarations

Conflict of interest

The authors have no conflict of interest in the present study.

Additional information

Communicated by Sergio J. Ochatt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadhu, S., Jogam, P., Thampu, R.K. et al. High efficiency plant regeneration and genetic fidelity of regenerants by SCoT and ISSR markers in chickpea (Cicer arietinum L.). Plant Cell Tiss Organ Cult 141, 465–477 (2020). https://doi.org/10.1007/s11240-020-01804-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-020-01804-7

Keywords

Navigation