Skip to main content

Advertisement

Log in

Advances in biotechnological applications in three important food legumes

  • Review Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Legumes are the third largest family of flowering plants, known for their unique capacity of symbiotic nitrogen fixation. The draft genome sequences of three important food legumes [soybean (Glycine max), pigeonpea (Cajanus cajan) and chickpea (Cicer arietinum)] have been completed. Coupled with a deluge of information on transcriptomics, proteomics and metabolomics, they present a huge amount of genomic resources for the genetic improvement of legume crops. Developed molecular markers, structurally and functionally annotated genes/quantitative trait loci/alleles and regulatory sequences can be utilized in improvement breeding programmes. Further, the genetic transformation of two valuable pulses (chickpea and pigeonpea) has now taken centre stage, realizing the potential of genetically modified soybean, for enhanced prospects of food production. Together, the advances in biotechnological tools and the research community’s capacity to develop imaginative strategies will help in framing a legume development programme for ensuring the nutritional security of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acharjee S, Sarmah BK, Kumar PA, Olsen K, Mohan R, Moar WJ, Moore A, Higgins TJV (2010) Transgenic chickpeas expressing a sequence-modified cry2Aa gene. Plant Sci 178:333–339

    CAS  Google Scholar 

  • Agarwal G, Jhanwar S, Priya P, Singh VK, Saxena MS, Parida SK, Garg R, Tyagi AK, Jain M (2012) Comparative analysis of kabuli chickpea transcriptome with desi and wild chickpea provides a rich resource for development of functional markers. PLoS ONE 7:e52443

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anbessa Y, Taran B, Warkentin TD, Tullu A, Vanderberg A (2009) Genetic analysis and conservation of QTL for Ascochyta blight resistance in chickpea. Theor Appl Genet 119:757–765

    CAS  PubMed  Google Scholar 

  • Bell CJ, Dixon RA, Farmer AD, Flores R, Inman J, Gonzales RA, Harrison MJ, Paiva NL, Scott AD, Weller JW, May GD (2001) The Medicago Genome Initiative: a model legume database. Nucleic Acids Res 29:114–117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benkeblia N, Shinano T, Osaki M (2007) Metabolite profiling and assessment of metabolome compartmentation of soybean leaves using non-aqueous fractionation and GC-MS analysis. Metabolomics 3:297–305

    CAS  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Jyotsna M, Lavanya M, Vani G, Sharma KK (2009) Genetic engineering of chickpea (Cicer arietinum L.) with the P 5 CSF 129 A gene for osmoregulation with implications on drought tolerance. Mol Breed 23:591–606

    CAS  Google Scholar 

  • Bhushan D, Pandey A, Choudhary M, Datta A, Chakraborty S, Chakraborty N (2007) Comparative proteomics analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress. Mol Cell Proteomics 6:1868–1884

    CAS  PubMed  Google Scholar 

  • Bohra A, Dubey A, Saxena RK, Penmetsa RV, Poornima KN et al (2011) Analysis of BAC-end sequences (BESs) and development of BES-SSR markers for genetic mapping and hybrid purity assessment in pigeonpea (Cajanus spp.). BMC Plant Biol 11:56

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bohra A, Saxena RK, Gnanesh BN, Saxena KB, Byregowda M et al (2012) An intra-specific consensus genetic map of pigeonpea (Cajanus cajan (L.) Millspaugh) derived from six mapping populations. Theor Appl Genet 125:1325–1338

    PubMed Central  PubMed  Google Scholar 

  • Cannon SB, May GD, Jackson SA (2009) Three sequenced legume genomes and many crop species: rich opportunities for translational. Genomics 151:970–977

    CAS  Google Scholar 

  • Chakraborti D, Sarkar A, Mondal HA, Das S (2009) Tissue specific expression of potent insecticidal, Allilum sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinium L.) to resist the phloem feeding Aphis craccivora. Transgenic Res 18:529–544

    CAS  PubMed  Google Scholar 

  • Cheng J, Yuan C, Graham TL (2011) Potential defense-related prenylated isoflavones n lactofen-induced soybean. Phytochemistry 72:875–881

    CAS  Google Scholar 

  • Choudhary P, Khanna SM, Jain Pk, Bharadwaj C, Kumar J, Lakhera PC et al (2011) Genetic structure and diversity analysis of the primary gene pool of chickpea using SSR markers. Genet Mol Res 11:891–905

    Google Scholar 

  • Cobos MJ, Winter P, Kharrat M, Cubero JI, Gil J et al (2009) Genetic analysis of agronomic traits in a wide cross of chickpea. Field Crop Res 111:130–136

    Google Scholar 

  • Cook D (1999) Medicago truncatula: a model in the making! Curr Opin Plant Biol 2:301–304

    CAS  PubMed  Google Scholar 

  • Dayal S, Lavanya M (2003) An efficient protocol for shoot generation and genetic transformation of pigeonpea (Cajanus cajan [L.] Millsp.) using leaf explants. Plant Cell Rep 21:1072–1079

    CAS  PubMed  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    CAS  PubMed  Google Scholar 

  • Dixon RA, Sumner LW (2003) Legume natural products: understanding and manipulating complex pathways for human and animal health. Plant Physiol 131:878–885

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doyle JJ, Lucknow MA (2003) The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol 131:900–910

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dubey A, Farmer A, Schlueter J, Cannon SB, Abernathy B et al (2011) Defining the transcriptome assembly and its use for genome dynamics and transcriptome profiling studies in pigeonpea (Cajanus cajan L. Millsp.). DNA Res 18:153–164

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dutta S, Kumawat G, Singh BP, Gupta DK, Singh S et al (2011) Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea (Cajanus cajan (L.) Millspaugh). BMC Plant Biol 11:17

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fontana GS, Santini L, Caretto S, Frugis G, Mariotti D (1993) Genetic transformation in the grain legume chickpea (Cicer arietinum L.). Plant Cell Rep 12:194–198

    CAS  PubMed  Google Scholar 

  • Garg R, Patel RK, Jhanwar S, Priya P, Bhattacharjee A et al (2011a) Gene discovery and tissue-specific transcriptome analysis in chickpea with massively parallel pyrosequencing and web resource development. Plant Physiol 156:1661–1678

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garg R, Patel RK, Tyagi AK, Jain M (2011b) De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res 18:53–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaur R, Sethy NK, Choudhary S, Shokeen B, Gupta V, Bhatia S (2011) Advancing the STMS genomic resources for defining new locations on the intraspecific genetic linkage map of chickpea (Cicer arietinum L.). BMC Genomics 12:117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaur R, Azam S, Jeena G, Khan AW, Choudhary S et al (2012) High-throughput SNP discovery and genotyping forconstructing a saturated linkage map of chickpea (Cicer arietinum L.). DNA Res 19:357–373

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geetha N, Venkatachalam P, Lakshmi Sita G (1999) Agrobacterium mediated genetic transformation of pigeonpea (Cajanus cajan [L.]) and development of transgenic plants via direct organogenesis. Plant Biotechnol 16:213–218

    CAS  Google Scholar 

  • Gowda CLL, Upadhyaya HD, Dronavalli N, Singh S (2011) Identification of large-seeded high-yielding stable kabuli chickpea germplasm lines for use in crop improvement. Crop Sci 5:198–209

    Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gujaria N, Kumar A, Dauthal P, Dubey A, Hiremath P et al (2011) Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.). Theor Appl Genet 122:1577–1589

    PubMed Central  PubMed  Google Scholar 

  • He XZ, Dixon RA (2000) Genetic manipulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 40-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. Plant Cell 12:1689–1702

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hiremath PJ, Farmer A, Cannon SB, Woodward J, Kudapa H et al (2011) Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotech J 9:922–931

    CAS  Google Scholar 

  • Hiremath PJ, Kumar A, Penmetsa RV, Farmer A, Schlueter JA et al (2012) Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant Biotech J 10:716–732

    CAS  Google Scholar 

  • Ignacimuthu S, Prakash S (2006) Agrobacterium-mediated transformation of chickpea with α-amylase inhibitor gene for insect resistance. J Biosci 31:339–345

    CAS  PubMed  Google Scholar 

  • Indurker S, Misra HS, Eapen S (2007) Genetic transformation of chickpea (cicer arietinum L.) with insecticidal crystal protein gene using particle gun bombardment. Plant Cell Rep 26:755–763

    CAS  PubMed  Google Scholar 

  • Iruela M, Castro P, Rubio J, Cubero JI, Jacinto C, Mulla T et al (2007) Validation of a QTL for resistance to Ascochyta blight linked to resistance to fusarium wilt race 5 in chickpea (Cicer arietinum L.). Eur J Plant Pathol 19:29–37

    Google Scholar 

  • Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Jeena G, Yadav M, Kant C, Sharma P, Yadav G, Bhatia S, Tyagi AK, Chattopadhyay D (2013) The draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:715–729

  • James C (2012) Global status of commercialized Biotech/GM Crops: 2012 ISAAA Brief No. 44, Ithaca, New York

  • Jayashree B, Punna R, Prasad P, Bantte K, Hash CT et al (2006) A database of simple sequence repeats from cereal and legume expressed sequence tags mined in silico: survey and evaluation. In Silico Biol 6:607–620

    CAS  PubMed  Google Scholar 

  • Jhanwar S, Priya P, Garg R, Parida SK, Tyagi AK, Jain M (2012) Transcriptome sequencing of wild chickpea as a rich resource for marker development. Plant Biotechnol J 10(6):690–702

    CAS  PubMed  Google Scholar 

  • Joshi T, Patil K, Fitzpatrick MR, Franklin LD, Yao Q, Cook JR, Wang Z, Libault M, Brechenmacher L, Valliyodan B, Wu X, Cheng J, Stacey G, Nguyen HT, Xu D (2012) Soybean knowledge base (SoyKB): a web resource for soybean translational genomics. BMC Genomics 13:S15

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kar S, Johnson TM, Nayak P, Sen SK (1996) Efficient transgenic plant regeneration through Agrobacterium meadiated transformation of chickpea (Cicer arietinum L.). Plant Cell Rep 16:32–37

    CAS  PubMed  Google Scholar 

  • Kar S, Basu D, Das S, Ramakrishnan NA, Mukherjee P, Sen SK (1997) Expression of cry1Ac gene of Bacillus thuringenesis in transgenic chickpea plants inhibits development of pod borer (Heliothis armigera) larvae. Transgenic Res 6:177–185

    CAS  Google Scholar 

  • Kotresh H, Fakrudin B, Punnuri S, Rajkumar B, Thudi M, Paramesh H (2006) Identification of two RAPD markers genetically linked to a recessive allele of a Fusarium wilt resistance gene in pigeonpea (Cajanus cajan (L.) Millsp.). Euphytica 149:113–120

    CAS  Google Scholar 

  • Krishnamurthy KV, Suhasini K, Sagar AP, Meixner M, de Kathen A, Pickardt T, Schieder O (2000) Agrobacterium-mediated transformation of chickpea (Cicer arietinum) embryo axis. Plant Cell Rep 19:235–240

    CAS  Google Scholar 

  • Kudapa H, Bharti AK, Cannon SB, Farmer AD, Mulaosmanovic B et al (2012) A comprehensive transcriptome assembly of pigeonpea (Cajanus cajan L. Millsp.) using Sanger and second-generation sequencing platforms. Mol Plant 5:1020–1028

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar SM, Kumar BK, Sharma KK, Devi P (2004) Genetic transformation of pigeonpea with rice chitinase gene. Plant Breed 123:485–489

    CAS  Google Scholar 

  • Lawrence PK, Koundal KR (2001) Agrobacterium tumefaciens-mediated transformation of pigeonpea (Cajanus cajan L. Millsp.) and molecular analysis of regenerated plants. Curr Sci 80:1428–1432

    CAS  Google Scholar 

  • Lei Z, Dai X, Watson BS, Zhao PX, Sumner LW (2011) A legume specific protein database (LegProt) improves the number of identified peptides, confidence scores and overall protein identification success rates for legume proteomics. Phytochemistry 72:1020–1027

    CAS  PubMed  Google Scholar 

  • Madrid E, Rubiales D, Moral A, Moreno MT, Millan T, Gil J et al (2008) Mechanism and molecular markers associated with rust resistance in a chickpea interspecific cross (Cicer arietinum × Cicer reticulatum). Eur J Plant Pathol 121:45–53

    Google Scholar 

  • Mehrotra M, Singh AK, Sanyal I, Altosaar I, Amla DV (2011a) Pyramiding of modified cry1Ab and cry1Ac genes of Bacillus thuringiensis in transgenic chickpea for improved resistance to pod borer insect Helicoverpa armigera. Euphytica 182:87–102

    CAS  Google Scholar 

  • Mehrotra M, Sanyal I, Amla DV (2011b) High-efficiency Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) and regeneration of insect-resistant transgenic plants. Plant Cell Rep 30:1603–1616

    CAS  PubMed  Google Scholar 

  • Mohan ML, Krishnamurthy KV (2003) Plant regeneration from mature decapitated embryonic axis and Agrobacterium mediated genetic transformation of pigeonpea. Biol Plant 46:519–527

    Google Scholar 

  • Mun JH, Kim DJ, Choi HK, Gish J, Debellé F et al (2006) Distribution of microsatellites in the genome of Medicago truncatula: a resource of genetic markers that integrate genetic and physical maps. Genetics 172:2541–2555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nayak SN, Zhu H, Varghese N, Datta S, Choi HK et al (2010) Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theor Appl Genet 120:1415–1441

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pandey A, Chakraborty S, Datta A, Chakraborty N (2008) Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.). Mol Cell Proteomics 7:88–107

    CAS  PubMed  Google Scholar 

  • Pathak MR, Hamzah RY (2008) An effective method of sonication-assisted Agrobacterium mediated transformation of chickpeas. Plant Cell Tiss Org Cult 93:65–71

    Google Scholar 

  • Patil G, Deokar A, Jain PK, Thengane RJ, Srinivasan R (2009) Development of phosphomannose isomerise—based Agrobacterium mediated transformation system for chickpea (Cicer arietinum L.). Plant Cell Rep 28:1669–1676

    CAS  PubMed  Google Scholar 

  • Polhill RM, Raven PH (eds) (1981) Advances in legume systematics, part 1. Royal Botanical gardens, Kew, pp 1–425

  • Polowick PL, Baliski DS, Mohan JD (2004) Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.): gene integration, expression and inheritance. 23:485–491

  • Prasad V, Satyavathi VV, Sanjaya Valli KM, Khandelwal A, Shaila MS, Lakshmi Sita G (2004) Expression of biologically active hemagglutinin-neuraminidase protein 4 of Peste des petits ruminants virus in transgenic pigeonpea (Cajanus cajan L.). Plant Sci 166:199–205

    CAS  Google Scholar 

  • Prescott VE, Campbell PM, Moore A, Mattes J, Rothenberg ME, Foster PS, Higgins TJV, Hogan SP (2005) Transgenic expression of bean α-amylase inhibitor in peas results in altered structure and immunogenicity. J Agric Food Chem 53:9023–9030

    CAS  PubMed  Google Scholar 

  • Raju NL, Gnanesh BN, Lekha P, Jayashree B, Pande S, Hiremath PJ et al (2010) The first set of EST resource for gene discovery and marker development in pigeonpea (Cajanus cajan L. Millsp.). BMC Plant Biol 10:45

    PubMed Central  PubMed  Google Scholar 

  • Ramu SV, Rohini S, Keshavareddy G, Neelima MG, Shanmugham NB, Kumar ARV, Sarangi SK, Kumar PA, Uday Kumar M (2012) Expression of a synthetic cry1AcF gene in transgenic Pigeon pea confers resistance to Helicoverpa armigera. J Appl Entomol 136:675–687

    CAS  Google Scholar 

  • Rao KS, Rohini S, Sharma PD, Keshamma E, Uday Kumar M (2008) In planta transformation of pigeonpea: a method to overcome recalcitrancy of the crop in vitro. Physiol Mol Biol Plant 14:321–328

    CAS  Google Scholar 

  • Rehman AU, Malhotra RS, Bett K, Taran B, Bueckert R, Warkentin TD (2011) Mapping QTL associated with traits affecting grain yield in chickpea (Cicer arietinum L.) under terminal drought stress. Crop Sci 51:450–463

    Google Scholar 

  • Sakata K, Ohyanagi H, Nobori H, Nakamura T, Hashiguchi A, Nanjo Y, Mikami Y, Yunokawa H, Komatsu S (2009) Soybean proteome database: a data resource for plant differential omics. J Proteome Res 8:3539–3548

    CAS  PubMed  Google Scholar 

  • Sanyal I, Singh AK, Amla DV (2003) Agrobacterium tumefaciens mediated transformation of chickpea (Cicer arietinum L.) using mature embryogenic axis and cotyledonary nodes. Indian J Biotechnol 2:524–532

    Google Scholar 

  • Sanyal I, Singh AK, Kaushik M, Amla DV (2005) Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) with Bacillus thuringiensis cry1Ac gene for resistance against pod borer insect Helicoverpa armigera. Plant Sci 168:1135–1146

    CAS  Google Scholar 

  • Sarmah BK, Moore A, Tate W, Molvig L, Morton RL, Rees DP, Chiaiese P, Chrispeels MJ, Tabe LM, Higgins TJV (2004) Transgenic chickpea seeds expressing high levels of a bean α-amylase inhibitor. Mol Breed 14:73–82

    CAS  Google Scholar 

  • Sato S, Tabata S (2005) Lotus japonicus as a platform for legume research. Curr Opin Plant Biol 9:128–132

    Google Scholar 

  • Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T et al (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15:227–239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Satyavathi VV, Prasad V, Khandelwal A, Shaila MS, Lakshmi Sita G (2003) Expression of hemagglutinin protein of Rinder pest virus in transgenic pigeonpea (Cajanus cajan L.) plants. Plant Cell Rep 21:651–658

    CAS  PubMed  Google Scholar 

  • Saxena RK, Penmetsa RV, Upadhyaya HD, Kumar A, Carrasquilla-Garcia N, Schlueter JA et al (2012) Large-scale development of cost-effective single-nucleotide polymorphism marker assays for genetic mapping in pigeonpea and comparative mapping in legumes. DNA Res 19:449–461

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitroso T et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    CAS  PubMed  Google Scholar 

  • Senthil G, Williamsom B, Dinkins RD, Ramsay G (2004) An efficient transformation system for chickpea (Cicer arietinum L.). Plant Cell Rep 23:297–303

    CAS  PubMed  Google Scholar 

  • Sharma KD, Winter P, Kahl G, Muehlbauer FJ (2004) Molecular mapping of Fusarium oxysporum f. sp. ciceris race 3 resistance gene in chickpea. Theor Appl Genet 108:243–248

    Google Scholar 

  • Sharma KD, Chen W, Muehlbauer FJ (2005) Genetics of chickpea resistance to five races of Fusarium wilt and a concise set of race differentials for Fusarium oxysporum f. sp. ciceris. Plant Dis 89:385–390

    Google Scholar 

  • Sharma KK, Lavanya K, Anjalah A (2006) Agrobacterium tumefaciens-mediated production of transgenic pigeon pea (Cajanus cajan [L.]Millsp.) expressing the synthetic BT CRY1AB gene. In Vitro Cell Dev Biol 42:165–173

    CAS  Google Scholar 

  • Singh R, Sharma P, Varshney RK, Sharma SK, Singh NK (2008) Chickpea improvement: role of wild species and genetic markers. Biotechnol Gen Eng Rev 25:267–314

    CAS  Google Scholar 

  • Singh R, Singh NP, Datta S, Yadav IS, Singh AP (2009) Agrobacterium-mediated transformation of chickpea using shoot meristem. Ind J Biotech 8:78–84

    CAS  Google Scholar 

  • Singh NK, Gupta DK, Jayaswal PK, Mahato AK, Dutta S et al (2011) The first draft of the pigeonpea genome sequence. J Plant Biochem Biotechnol 21:98–112

    PubMed Central  PubMed  Google Scholar 

  • Srinivasan MT, Sharma RP (1991) Agrobacterium mediated genetic transformation of chickpea, Cicer arietinum L. Ind J Exp Biol 29:758–761

    CAS  Google Scholar 

  • Stougaard J (2001) Genetics and genomics of root symbiosis. Curr Opin Plant Biol 4:328–335

    CAS  PubMed  Google Scholar 

  • Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62:817–836

    CAS  PubMed  Google Scholar 

  • Surekha Ch, Beena MR, Arundhati A, Singh PK, Tuli R, Dutta-Gupts A, Kirti PB (2005) Agrobacterium mediated genetic transformation of pigeonpea (Cajanus cajan L.) using embryonal segments and development of transgenic plants for resistance against Spodoptera. Plant Sci 169:1074–1080

    CAS  Google Scholar 

  • Surekha Ch, Arundhati A, Rao S (2007) Differential response of Cajanus cajan varieties to transformation different strains of Agrobacterium. J Biol Sci 7:176–181

    CAS  Google Scholar 

  • Szczyglowski K, Stougaard J (2008) Lotus genome: pod of gold for legume research. Trends Plant Sci 13:515–517

    CAS  PubMed  Google Scholar 

  • Tewari-Singh N, Sen J, Kiesecker H, Reddy VS, Jacobsen HJ, Guha-Mukherjee S (2004) Use of herbicide or lysine plus threonine for non-antibiotic selection of transgenic chickpea 22:576–583

  • Thu TT, Mai TTX, Dewaele E, Farsi S, Tadesse Y, Angenon G, Jacobs M (2003) In vitro regeneration and transformation of pigeonpea (Cajanus cajan L.). Mol Breed 11:159–168

    CAS  Google Scholar 

  • Thu TT, Dewaele E, Trung LQ, Claeys M, Jacobs M (2007) Increasing lysine levels in pigeonpea (Cajanus cajan (L.) Millsp.) seeds through genetic engineering. Plant Cell Tiss Org Cult 91:135–143

    Google Scholar 

  • Thudi M, Bohra A, Nayak SN, Varghese N, Shah TM et al (2011) Novel SSR markers from BAC-end sequences, DArT arrays and a comprehensive genetic map with 1,291 marker loci for chickpea (Cicer arietinum L.). PLoS ONE 6:e27275

    CAS  PubMed Central  PubMed  Google Scholar 

  • Udvardi MK, Tabata S, Parniske M, Stougaard J (2005) Lotus japonicus: legume research in the fast lane. Trends Plant Sci 10:222–228

    CAS  PubMed  Google Scholar 

  • Upadhyaya HD et al (2008) Plant genetic resources management: collection, characterization, conservation and utilization. SAT e J 6:1–16

    Google Scholar 

  • Vadez V, Krishnamurthy L, Thudi M, Anuradha C, Colmer TD, Turner NC et al (2012) Assessment of ICCV23 × Jg62 chickpea progenies shows sensitivity of reproduction to salt stress and reveals QTL for seed yield and yield components. Mol Breed 30:9–21

    Google Scholar 

  • VandenBosch KA, Stacey G (2003) Summaries of legume genomics projects from around the globe. Community resources for crops and models. Plant Physiol 131:840–865

    PubMed Central  Google Scholar 

  • Varshney RK (2010) Gene-based marker systems in plants: high throughput approaches for discovery and genotyping. In: Jain SM, Brar DS (eds) Molecular techniques in crop improvement. Springer, The Netherlands, pp 119–142

    Google Scholar 

  • Varshney RK, Close TJ, Singh NK, Hoisington DA, Cook DR (2009a) Orphan legume crops enter the genomics era. Curr Opin Plant Biol 12:1–9

    Google Scholar 

  • Varshney RK, Hiremath PJ, Lekha PT, Kashiwagi J, Balaji J et al (2009b) A comprehensive resource of drought-and salinity-responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L). BMC Genomics 10:523

    PubMed Central  PubMed  Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009c) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    CAS  PubMed  Google Scholar 

  • Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK et al (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89

    CAS  Google Scholar 

  • Varshney RK, Song C, Saxena RK, Azam S, Yu S et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    CAS  PubMed  Google Scholar 

  • Verma AK, Chand L (2005) Agrobacterium mediated transformation of pigeonpea (Cajanus cajan L.) with uidA and cryIA(b) genes. Physiol Mol Biol Plant 11:99–109

    CAS  Google Scholar 

  • Vigeolas H, Chinoy C, Zuther E, Blessington B, Geigenberger P, Domoney C (2008) Combined metabolomic and genetic approaches reveal a link between the polyamine pathway and albumin 2 in developing pea seeds. Plant Physiol 146:74–82

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang SY, Saxena RK, Kulwal PA, Ash GJ, Dubey A, Harper DI et al (2011) The first genetic map of pigeonpea based on diversity arrays technology (DArT) markers. J Genet 90:103–109

    PubMed  Google Scholar 

  • Young ND, Udvardi M (2009) Translating Medicago truncatula genomics to crop legumes. Curr Opi Plant Biol 12:193–201

    CAS  Google Scholar 

  • Young ND, Debellé F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KFX, Gouzy J, Schoof H et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–524

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu H, Choi HK, Cook DR, Shoemaker RC (2005) Bridging model and crop legumes through comparative genomics. Plant Physiol 137:1189–1196

    Google Scholar 

Download references

Acknowledgments

We thank the Indian Council of Agricultural Research (ICAR) and the Department of Biotechnology (DBT), Government of India, for funding research in our laboratories. We are grateful to all our colleagues for providing helpful suggestions for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, A., Parida, S.K. Advances in biotechnological applications in three important food legumes. Plant Biotechnol Rep 8, 83–99 (2014). https://doi.org/10.1007/s11816-013-0299-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-013-0299-7

Keywords

Navigation