Skip to main content
Log in

Improved Agrobacterium tumefaciens-mediated transformation of soybean [Glycine max (L.) Merr.] following optimization of culture conditions and mechanical techniques

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

In the present study, Agrobacterium tumefaciens-mediated transformation of Glycine max (L.) Merr. (soybean) cv. DS-9712 using half-seed explants was optimized for eight different parameters, including seed imbibition, medium pH, infection mode (sonication and vacuum infiltration), co-cultivation conditions, concentrations of supplementary compounds, and selection. Using this improved protocol, maximum transformation of 14% and regeneration efficiencies of 45% were achieved by using explants prepared from mature seeds imbibed for 36 h, infected with A. tumefaciens strain EHA105 at an optical density (OD600) of 0.8, suspended in pH 5.4 medium containing 0.2 mM acetosyringone and 450 mg L−1 L-cysteine, followed by sonication for 10 s, vacuum infiltration for 2 min, and co-cultivated for 3 d on 35 mg L−1 kanamycin-containing medium. Independent transgenic lines were confirmed to be transgenic after ß-glucuronidase histochemical assays, polymerase chain reaction, and southern hybridization analysis. The protocol developed in the present study showed high regeneration efficiency within a relatively short time of 76 d. This rapid and efficient protocol might overcome some hurdles associated with the genetic manipulation of soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acereto-Escoffie POM, Chi-Manzanero BH, Echeverria-Echeverria S, Grijalva R, Kay AJ, González-Estrada T, Castaño E, Rodriguez-Zapata LC (2005) Agrobacterium-mediated transformation of Musa acuminata cv “grand nain” scalps by vacuum infiltration. Sci Hortic 105:359–371

    CAS  Google Scholar 

  • Amoah BK, Wu H, Sparks C, Jones HD (2001) Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue. J Exp Biol 52:1135–1142

    CAS  Google Scholar 

  • An X, Wang B, Liu L, Jiang H, Chen J, Ye S, Chen L, Guo P, Huang X, Peng D (2014) Agrobacterium-mediated genetic transformation and regeneration of transgenic plants using leaf midribs as explants in ramie [Boehmerianivea (L.) gaud]. Mol Biol Rep 41:3257–3269

    CAS  PubMed  Google Scholar 

  • Ananthakrishnan G, Xia X, Amutha S, Singer S, Muruganantham M, Yablonsky S, Fischer E, Gaba V (2007) Ultrasonic treatment stimulates multiple shoot regeneration and explant enlargement in recalcitrant squash cotyledon explants in vitro. Plant Cell Rep 26:267–276

    CAS  PubMed  Google Scholar 

  • Arun M, Subramanyam K, Theboral J, Ganapathi A, Manickavasagam M (2014) Optimized shoot regeneration for Indian soybean: the influence of exogenous polyamines. Plant Cell Tissue Organ Cult 117:305–309

    CAS  Google Scholar 

  • Bakshi S, Sadhukhan A, Mishra S, Sahoo L (2011) Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration. Plant Cell Rep 30:2281–2292

    CAS  PubMed  Google Scholar 

  • Bechtold N, Pelletier G (1995) In-planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol 82:259–326

    Google Scholar 

  • Beranová M, Rakouský S, Vávrová Z, Skalický T (2008) Sonication assisted Agrobacterium- mediated transformation enhances the transformation efficiency in flax (Linum usitatissimum L.). Plant Cell Tissue Organ Cult 94:253–259

    Google Scholar 

  • Bolton GW, Nester EW, Gordon MP (1986) Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence. Science 232:983–985

    CAS  PubMed  Google Scholar 

  • Bowen BA (1993) Markers for gene transfer. In: Kung S, Wu R (eds) Transgenic Plants: Engineering and Utilization, Academic Press, New York pp 89–123

  • Canche-Moo RLR, Ku-Gonzalez A, Burgeff C, Loyola-Vargas VM, Rodrı’guez-Zapata LC, Castan’o E (2006) Genetic transformation of Coffea canephora by vacuum infiltration. Plant Cell Tissue Organ Cult 84:373–377

    Google Scholar 

  • Chakrabarty R, Viswakarma N, Bhat SR, Kirti PB, Singh BD, Chopra VL (2002) Agrobacterium-mediated transformation of cauliflower: optimization of protocol and development of Bt-transgenic cauliflower. J Biosci 27:495–502

    CAS  PubMed  Google Scholar 

  • Charity JA, Holland L, Donaldson SS, Grace L, Walter C (2002) Agrobacterium-mediated transformation of Pinus radiata organogenic tissue using vacuum-infiltration. Plant Cell Tissue Organ Cult 70:51–60

    CAS  Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Connor TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho HJ, Farrand SK, Noel GR, Widholm JM (2000) High efficiency induction of soybean hairy roots and propagation of the soybean cyst nematode. Planta 210:195–204

    CAS  PubMed  Google Scholar 

  • Chopra R, Saini R (2012) Use of sonication and vacuum infiltration for Agrobacterium-mediated transformation of an Indian lentil (Lens culinaris Medik.) cultivar. Sci Hortic 143:127–134

    CAS  Google Scholar 

  • Clemente TE, LaVallee BJ, Howe AR, Conner-Ward D, Rozman RJ, Hunter PE, Broyles DL, Kasten DS, Hinchee MA (2000) Progeny analysis of glyphosate selected transgenic soybean derived from Agrobacterium-mediated transformation. Crop Sci 40:797–803

    CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    CAS  PubMed  Google Scholar 

  • Dan Y (2008) Biological functions of antioxidants in plant transformation. In Vitro Cell Dev Biol-Plant 44:149–161

    CAS  Google Scholar 

  • Das DK, Reddy MK, Upadhyaya KC, Sopory SK (2002) An efficient leaf-disk culture method for the regeneration via somatic embryogenesis and transformation of grape (Vitis vinifera L.). Plant Cell Rep 20:999–1005

    CAS  Google Scholar 

  • Di R, Purcell V, Collins GB, Ghabrial SA (1996) Production of transgenic soybean line expressing the bean pod mottle virus coat protein precursor gene. Plant Cell Rep 15:746–750

    CAS  PubMed  Google Scholar 

  • Dong J, Kharb P, Teng W, Hall TC (2001) Characterization of rice transformed via an Agrobacterium inflorescence approach. Mol Breeding 7:187–194

    CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Duque AS, Araujo SS, Cordeiro MA, Santos DM, Fevereiro MP (2007) Use of fused gfp and gus reporters for the recovery of transformed Medicago truncatula somatic embryos without selective pressure. Plant Cell Tissue Organ Cult 90:325–330

    CAS  Google Scholar 

  • Enríquez-Obregón GA, Vázquez-Padrón RI, Prieto-Samsonov DL, De la Riva GA, Selman-Housein G (1998) Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. Planta 206:20–27

    Google Scholar 

  • Franklin G, Carpenter L, Davis E, Reddy CS, Al-Abed D, Alaiwi WA, Parani M, Smith B, Sairam RV (2004) Factors influencing regeneration of soybean from mature and immature cotyledons. Plant Growth Regul 43:73–79

    CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–115

    CAS  PubMed  Google Scholar 

  • Gnasekaran P, Antony JJJ, Uddain J, Subramaniam S (2014) Agrobacterium-mediated transformation of the recalcitrant Vanda Kasem’s delight orchid with higher efficiency. Sci World J 2014:583934

    Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research, 2nd edn. John Wiley and Sons, New York

    Google Scholar 

  • Goodman RN, Novacky AJ (1994) The hypersensitive reaction in plants to pathogens. A resistant phenomenon. APS PRESS, St. Paul, Minnesota

  • Guivarch A, Caissard J, Brown S, Marie D, Dewitte W, Vanonckelen H, Chriqui D (1993) Localization of target cells and improvement of Agrobacterium-mediated transformation efficiency by direct acetosyringone pretreatment of carrot root disks. Protoplasma 174:10–18

    CAS  Google Scholar 

  • Gupta S, Gupta S, Bhat V, Gupta MG (2006) Somatic embryogenesis and Agrobacterium-mediated genetic transformation in Indian accessions of Lucerne (Medicago sativa L.). Ind J Biotechnol 5:269–275

    CAS  Google Scholar 

  • Hada A, Krishnan V, Punjabi M, Basak N, Pandey V, Jeevaraj T, Marathe A, Gupta AK, Jolly M, Kumar A, Dahuja A, Manickavasagam M, Ganapathi A, Sachdev A (2016) Refined glufosinate selection and its extent of exposure for improving the Agrobacterium-mediated transformation in Indian soybean (Glycine max) genotype JS-335. Plant Biotechnol 33:341–350

    Google Scholar 

  • Hansen G (2000) Evidence for Agrobacterium-induced apoptosis in maize cells. Mol Plant-Microbe Interact 13:649–657

    CAS  PubMed  Google Scholar 

  • Hardegger M, Sturm A (1998) Transformation and regeneration of carrot (Daucus carota L.). Mol Breeding 4:119–127

    CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    CAS  PubMed  Google Scholar 

  • Hinchee MAW, Conor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT, Horsch RB (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Nat Biotechnol 6:915–922

    CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    CAS  Google Scholar 

  • Indurker S, Misra HS, Eapen S (2010) Agrobacterium-mediated transformation in chickpea (Cicer arietinum L.) with an insecticidal protein gene: optimization of different factors. Physiol Mol Biol Plants 16:273–284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ismael KA, Antar EN (2014) Establishment of high-efficiency Agrobacterium-mediated transformation conditions of soybean callus. Ind J Biotechnol 13:459–463

    CAS  Google Scholar 

  • Jaiwal PK, Kumari R, Ignacimuthu S, Potrykus I, Sautter C (2001) Agrobacterium tumefaciens-mediated transformation of mungbean (Vigna radiata) a recalcitrant grain legume. Plant Sci 161:239–247

    CAS  PubMed  Google Scholar 

  • James D, Uratsu S, Cheng J, Negri P, Viss P, Dandekar A (1993) Acetosyringone and osmo-protectants like betaine or proline synergically enhance Agrobacterium-mediated transformation of apple. Plant Cell Rep 12:559–563

    CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol 5:387–405

    CAS  Google Scholar 

  • Joao L, Brown A (1993) Enhanced transformation of tomato co-cultivated with Agrobacterium tumefaciens C58 CIRIF- R PGSFRI161 in the presence of acetosyringone. Plant Cell Rep 12:422–425

    CAS  Google Scholar 

  • Joersbo M, Brunstedt J (1990) Direct gene transfer to plant protoplast by mild sonication. Plant Cell Rep 9:207–210

    CAS  PubMed  Google Scholar 

  • Joersbo M, Brunstedt J (1992) Sonication: a new method for gene transfer to plants. Physiol Plant 85:230–234

    CAS  Google Scholar 

  • Khan MR, Rashid H, Ansar M, Chaudury Z (2003) High frequency shoot regeneration and Agrobacterium-mediated DNA transfer in canola (Brassica napus). Plant Cell Tissue Organ Cult 75:223–231

    Google Scholar 

  • Kim JH, Lamotte CE, Hack E (1990) Plant regeneration in vitro from primary leaf nodes of soybean (Glycine max) seedlings. J Plant Physiol 136:664–669

    Google Scholar 

  • Ko TS, Korban SS (2004) Enhancing the frequency of somatic embryogenesis following Agrobacterium-mediated transformation of immature cotyledons of soybean [Glycine max (L.) Merrill]. In Vitro Cell Dev Biol-Plant 40:552–558

    CAS  Google Scholar 

  • Ko TS, Lee S, Krasnyanski S, Korban SS (2003) Two critical factors are required for efficient transformation of multiple soybean cultivars: Agrobacterium strain and orientation of immature cotyledonary explant. Theor Appl Genet 107:439–447

    CAS  PubMed  Google Scholar 

  • Komatsuda T, Ko SW (1990) Screening of soybean (Glycine max (L.) Merrill) genotypes for embryo production form immature embryo. Jpn J Breed 40:249–251

    Google Scholar 

  • Kumar B, Talukdar A, Verma K, Girmilla V, Bala I, Lal SK, Pal Singh K, Sapra RL (2014) Screening of soybean [Glycine max (L.) Merr.] genotypes for yellow mosaic virus (YMV) disease resistance and their molecular characterization using RGA and SSRs markers. Aust J Crop Sci 8:27–34

    Google Scholar 

  • Kumar V, Sharma A, Prasad BCN, Gururaj HB, Ravishankar GA (2006) Agrobacterium rhizogenes-mediated genetic transformation resulting in hairy root formation is enhanced by ultrasonication and acetosyringone treatment. Electron J Biotechnol 9:349–357

    Google Scholar 

  • Kumari S, Krishnan V, Dahuja A, Vinutha T, Jolly M, Sachdev A (2016) A rapid method for optimization of Agrobacterium-mediated transformation of Indian soybean genotypes. Indian J Biochem Biophys 53:218–226

    CAS  Google Scholar 

  • Kumria R, Waie B, Rajam MV (2001) Plant regeneration from transformed embryogenic callus of an elite Indica rice via Agrobacterium. Plant Cell Tissue Organ Cult 67:63–71

    CAS  Google Scholar 

  • Kuta DD, Tripathi L (2005) Agrobacterium-induced hypersensitive necrotic reaction in plant cells: a resistance response against Agrobacterium-mediated DNA transfer. Afr J Biotechnol 4:752–757

    CAS  Google Scholar 

  • Lee SH, Lee DG, Woo HS, Lee KW, Kim DH, Kwak SS, Kim JS, Kim H, Ahsan N, Choi MS, Yang JK (2006) Production of transgenic orchard grass via Agrobacterium-mediated transformation of seed-derived callus tissues. Plant Sci 171:408–414

    CAS  PubMed  Google Scholar 

  • Lee YW, Jin S, SimWS NEW (1995) Genetic evidence for direct sensing of phenolic compounds by the VirA protein of Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 92:12245–12249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leelavathi S, Sunnichan SG, Kumria R, Vijaykanth GP, Bhatnagar RK, Reddy VS (2004) A simple and rapid Agrobacterium-mediated transformation protocol for cotton (Gossypium hirsutum L.): Embryogenic calli as a source to generate large numbers of transgenic plants. Plant Cell Rep 22:465–470

    CAS  PubMed  Google Scholar 

  • Li S, Cong Y, Liu Y, Wang T, Shuai Q, Chen N, Gai J, Li Y (2017) Optimization of Agrobacterium-mediated transformation in soybean. Front Plant Sci 8:246

    PubMed  PubMed Central  Google Scholar 

  • Liu HK, Yang C, Wei ZM (2004) Efficient Agrobacterium tumefaciens-mediated transformation of soybeans using an embryonic tip regeneration system. Planta 219:1042–1049

    CAS  PubMed  Google Scholar 

  • Liu Z, Park BJ, Kanno A, Kameya T (2005) The novel use of a combination of sonication and vacuum infiltration in Agrobacterium-mediated transformation of kidney bean (Phaseolus vulgaris L.) with lea gene. Mol Breeding 16:189–197

    CAS  Google Scholar 

  • Mariashibu TS, Subramanyam K, Arun M, Mayavan S, Rajesh M, Theboral J, Manickavasagam M, Ganapathi A (2013) Vacuum infiltration enhances the Agrobacterium-mediated genetic transformation in Indian soybean cultivars. Acta Physiol Plant 35:41–54

    CAS  Google Scholar 

  • Mayavan S, Subramanyam K, Arun M, Rajesh M, Dev GK, Sivanandhan G, Jaganath B, Manickavasagam M, Selvaraj N, Ganapathi A (2013) Agrobacterium tumefaciens-mediated in planta seed transformation strategy in sugarcane. Plant Cell Rep 32:1557–1574

    CAS  PubMed  Google Scholar 

  • Mayer AM, Harel E (1979) Polyphenol oxidases in plants. Phytochemistry 18:193–215

    CAS  Google Scholar 

  • Mccabe DE, Swain WF, Martinell BJ, Christou P (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Nat Biotechnol 6:923–926

    Google Scholar 

  • Meurer CA, Dinkins RD, Collin GB (1998) Factors affecting soybean cotyledonary node transformation. Plant Cell Rep 18:180–186

    CAS  PubMed  Google Scholar 

  • Mohiuddin KM, Abdullah C, Harikrishna K, Chowdhury K, Napis S (2011) Enhanced virulence gene activity of Agrobacterium in muskmelon (Cucumis melo L.) cv. ‘Birdie’. Not Sci Biol 3:71–79

    CAS  Google Scholar 

  • Mukeshimana G, Ma Y, Walworth AE, Song GQ, Kelly JD (2013) Factors influencing regeneration and Agrobacterium tumefaciens-mediated transformation of common bean Phaseolus vulgaris L. Plant Biotechnol Rep 7:59–70

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Negishi O, Ozawa T (2000) Inhibition of enzymatic browning and protection of sulfhydryl enzymes by thiol compounds. Phytochemistry 54:481–487

    CAS  PubMed  Google Scholar 

  • Olhoft PM, Flagel LE, Donovan CM, Somers DA (2003) Efficient soybean transformation using hygromycin B selection in the cotyledonary node method. Planta 216:723–735

    CAS  PubMed  Google Scholar 

  • Olhoft PM, Somers DA (2001) L-cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary node cells. Plant Cell Rep 20:706–711

    CAS  Google Scholar 

  • Öz MT, Eyidoğan F, Yücel M, Öktem HA (2009) Optimized selection and regeneration conditions for Agrobacterium-mediated transformation of chickpea cotyledonary nodes. Pak J Bot 41:2043–2054

    Google Scholar 

  • Park BJ, Liu Z, Kanno A, Kameya T (2005) Transformation of radish (Raphanus sativus L.) via sonication and vacuum infiltration of germinated seeds with Agrobacterium harboring a group 3 LEA gene from B. napus. Plant Cell Rep 24:494–500

    CAS  PubMed  Google Scholar 

  • Paz MM, Martinez JC, Kalvig AB, Fonger TM, Wang K (2006) Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep 25:206–213

    CAS  PubMed  Google Scholar 

  • Potrykus I (1990) Gene transfer to cereals: an assessment. Nat Biotechnol 8:535–542

    CAS  Google Scholar 

  • Raj SK, Singh R, Pandey SK, Singh BP (2005) Agrobacterium-mediated tomato transformation and regeneration of transgenic lines expressing tomato leaf curl virus coat protein gene for resistance against TLCV infection. Curr Sci India 88:1674–1679

    CAS  Google Scholar 

  • Rashid H, Yoki S, Toriyama K, Hinata K (1996) Transgenic plant production mediated by Agrobacterium in Indica rice. Plant Cell Rep 15:727–730

    CAS  PubMed  Google Scholar 

  • Richard-Forget FC, Goupy PM, Nicolas JJ (1992) Cysteine as an inhibitor of enzymatic browning. 2. Kinetic studies. J Agr Food Chem 40:2108–2113

    CAS  Google Scholar 

  • Sahoo KK, Tripathi AK, Pareek A, Sopory SK, Singla-Pareek SL (2011) An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant Methods 7:49–59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Santarem ER, Trick HN, Essig JS, Finer JJ (1998) Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expression. Plant Cell Rep 17:752–759

    CAS  PubMed  Google Scholar 

  • Sato S, Newell C, Kolacz K, Tredo L, Finer J, Hinchee M (1993) Stable transformation via particle bombardment in two different soybean regeneration systems. Plant Cell Rep 12:408–413

    CAS  PubMed  Google Scholar 

  • Sheng J, Citovsky V (1996) Agrobacterium-plant cell DNA transport: have virulence proteins, will travel. Plant Cell 8:1699–1710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shrawat AK, Becke D, Lorz H (2007) Agrobacterium tumefaciens-mediated genetic transformation of barley (Hordeum vulgare L.). Plant Sci 172:281–290

    CAS  Google Scholar 

  • Solís JIF, Mlejnek P, Studená K, Procházka S (2003) Application of sonication-assisted Agrobacterium-mediated transformation in Chenopodium rubrum L. Plant Soil Environ 49:255–260

    Google Scholar 

  • Stachel SE, Messens E, Van MM, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629

    Google Scholar 

  • Subramanyam K, Sailaja KV, Srinivasulu M, Lakshmidevi K (2011) Highly efficient Agrobacterium-mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration. Plant Cell Rep 30:425–436

    CAS  PubMed  Google Scholar 

  • Tague BW, Mantis J (2006) In Planta Agrobacterium-mediated transformation by vacuum infiltration. Methods Mol Biol 323:215–223

    PubMed  Google Scholar 

  • Tiwari V, Chaturvedi AK, Mishra A, Jha B (2015) An efficient method of Agrobacterium-mediated genetic transformation and regeneration in local Indian cultivar of groundnut (Arachis hypogaea) using grafting. Appl Biochem Biotechnol 175:436–453

    CAS  PubMed  Google Scholar 

  • Townsend JA, Thomas LA (1993) An improved method of Agrobacterium-mediated transformation of cultured soybean cells. US Patent WO 94:02620

    Google Scholar 

  • Trick HN, Finer JJ (1997) SAAT: sonication-assisted Agrobacterium-mediated transformation. Transgenic Res 6:329–336

    CAS  Google Scholar 

  • Tyagi H, Rajsubramaniam S, Dasgupta I (2007) Regeneration and Agrobacterium-mediated transformation of a popular indica rice variety, ADT39. Curr Sci India 93:678–673

    CAS  Google Scholar 

  • Wang G, Huang M (2002) Tissue culture and plant regeneration of Cerasus campanulata. J Nanjing Univ 26:73–76

    Google Scholar 

  • Wang Q, Xing S, Pan Q, Yuan F, Zhao J, Tian Y, Chen Y, Wang G, Tang K (2012) Development of efficient Catharanthus roseus regeneration and transformation system using Agrobacterium tumefaciens and hypocotyls as explants. BMC Biotechnol 12:34

    PubMed  PubMed Central  Google Scholar 

  • Weir B, Wang X, Upadhyaya N, Elliot A, Brettell R (2001) Agrobacterium tumefaciens transformation of wheat using suspension cells as a model system and green fluorescent protein as a visual marker. Aust J Plant Physiol 28:807–818

    CAS  Google Scholar 

  • Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322:681–691

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotech J 3:259–273

    CAS  Google Scholar 

  • Xinping YI, Deyue YU (2006) Transformation of multiple soybean cultivars by infecting cotyledonary-node with Agrobacterium tumefaciens. Afr J Biotechnol 5:1989–1993

    Google Scholar 

  • Xue RG, Xie HF, Zhang B (2006) A multi-needle assisted transformation of soybean cotyledonary node cells. Biotechnol Lett 28:1551–1557

    CAS  PubMed  Google Scholar 

  • Yan B, Reddy MSS, Collins GB, Dinkins RD (2000) Agrobacterium tumefaciens-mediated transformation of soybean [Glycine max (L.) Merrill.] using immature zygotic cotyledon explants. Plant Cell Rep 19:1090–1097

    CAS  PubMed  Google Scholar 

  • Ye X, Williams EJ, Shen J, Esser JA, Nichols AM, Petersen MW, Gilbertson LA (2008) Plant development inhibitory genes in binary vector backbone improve quality event efficiency in soybean transformation. Transgenic Res 17:827–838

    CAS  PubMed  Google Scholar 

  • Zhang Z, Xing A, Staswick P, Clemente TE (1999) The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean. Plant Cell Tissue Organ Cult 56:37–46

    CAS  Google Scholar 

  • Zhong H, Que Q (2009) Method for transforming soybean (Glycine max). US Patent Number 20090023212

  • Zia M, Zarrin RF, Rehman RU, Chaudhary FM (2010) Agrobacterium-mediated transformation of soybean (Glycine max L.): some conditions standardization. Pak J Bot 42:2269–2279

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Dr. Andy Ganapathi (Vice Chancellor, Bharathiar University, Coimbatore, India) for his valuable guidance in improving soybean transformation.

Funding

This work was supported by National Agriculture Science Fund (NASF) program by the Indian Council of Agricultural Research (ICAR), India.

Author information

Authors and Affiliations

Authors

Contributions

AS conceived and designed the experiments. AH and VK performed the experiments and compiled and analyzed the data. AK, MJ, and AH generated the pictures. AH, VK, and AS prepared the manuscript. SP and MSMJ helped in manuscript revision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Archana Sachdev.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Editor: John Finer

Electronic supplementary material

ESM 1

(DOCX 232 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hada, A., Krishnan, V., Mohamed Jaabir, M.S. et al. Improved Agrobacterium tumefaciens-mediated transformation of soybean [Glycine max (L.) Merr.] following optimization of culture conditions and mechanical techniques. In Vitro Cell.Dev.Biol.-Plant 54, 672–688 (2018). https://doi.org/10.1007/s11627-018-9944-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-018-9944-8

Keywords

Navigation