Skip to main content
Log in

Use of Sorghum bicolor leaf whorl explants to expedite regeneration and increase transformation throughput

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Sorghum is considered a challenging species for transformation due to the limited choice in genotypes that can be transformed and the reliance on callus derived from immature embryos that need to be teased out of developing seeds. We have developed a more practical tissue culture procedure to generate embryogenic callus from leaf whorl explants obtained from 4 week-old seedlings. This procedure offers greater ease of obtaining explants, enables a more rapid turnover of growth chamber or greenhouse plants that can be used for explant collection, and eliminates the dependency on obtaining flowering plants with adequate numbers of seeds. Callus derived from these somatic embryos was amenable to biolistic transformation with DNA-coated gold particles and transformants were shown to express the Cas9 transgene. A comparison between genotypes RTx430 and P898012 indicated that the former was more suitable to tissue culture from leaf whorls based on greater callus induction and regeneration. Callus from both genotypes secreted colored compounds into the medium that we determined to be phenolic in nature, likely 3-deoxyanthocyanidins, based on UV–Vis absorbance profiles and thin layer chromatography. In order to reduce negative impacts of these compounds on regeneration, the addition of activated charcoal (AC) or polyvinylpyrrolidone (PVP) to the culture medium was examined. The addition of 0.5 g L−1 of AC after 4 weeks on callus induction medium accelerated callus regeneration, whereas culturing leaf whorl explants on medium containing 1 g L−1 PVP reduced the production of colored compounds and enhanced callus growth.

Key message

The use of leaf whorl explants from developing sorghum plants serves as a practical alternative to immature embryos as a source of embryogenic callus and doesn’t require plants to flower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahloowalia BS, Maretzki A (1983) Plant regeneration via somatic embryogenesis in sugarcane. Plant Cell Rep 2:21–25

    CAS  PubMed  Google Scholar 

  • Ahmadabadi M, Ruf S, Bock R (2007) A leaf-based regeneration and transformation system for maize (Zea mays L.). Transgenic Res 16:437–448

    CAS  PubMed  Google Scholar 

  • Ahmed RI, Ding A, Xie M, Kong Y (2018) Progress in optimization of Agrobacterium-mediated transformation in sorghum (Sorghum bicolor). Int J Mol Sci 19:2983

    PubMed Central  Google Scholar 

  • Almodares A, Taheri R, Chung IIIM, Fathi M (2008) The effect of nitrogen and potassium fertilizers on growth parameters and carbohydrate contents of sweet sorghum cultivars. J Environ Biol 29(6):849–852

    PubMed  Google Scholar 

  • Awika JM, Rooney LW, Waniska RD (2004) Properties of 3-deoxyanthocyanins from sorghum. J Agric Food Chem 52(14):4388–4394

    CAS  PubMed  Google Scholar 

  • Azhakanandam K, Zhang ZJ (2015) Sorghum transformation: Achievements, challenges, and perspectives. In: Azhakanandam K, Silverstone A, Daniell H, Davey M (eds) Recent advancements in gene expression and enabling technologies in crop plants. Springer, New York, NY, pp 291–312

    Google Scholar 

  • Balakrishna D, Vinodh R, Madhu P, Avinash S, Rajappa PV, Bhat BV (2019) Tissue culture and genetic transformation in Sorghum bicolor. In: Aruna C, Visarada KBRS, Bhat BV, Tonapi VA (eds) Breeding Sorghum for diverse end uses. Woodhead Publishing, Elsevier, Cambridge, pp 115–130

    Google Scholar 

  • Brisibe AE, Miyake H, Taniguchi T, Maeda E (1994) Regulation of somatic embryogenesis in long-term callus cultures of sugarcane (Saccharum officinarum L.). New Phytol 126:301–307

    CAS  Google Scholar 

  • Cai T, Daly B, Butler L (1987) Callus induction and plant regeneration from shoot portions of mature embryos of high tannin sorghums. Plant Cell Tissue Organ Cult 9:245–242

    Google Scholar 

  • Casas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA, Hasegawa PM (1993) Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sci USA 90:11212–11216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WH, Davey MR, Power JB, Cocking EC (1988) Control and maintainance of plant regeneration in sugarcane callus cultures. J Exp Bot 39:251–261

    CAS  Google Scholar 

  • Dalal M (2016) Genetic transformation for functional genomics of Sorghum. In: Rakshit S, Wang YH (eds) The Sorghum genome. Compendium of plant genomes. Springer, Cham, pp 227–242

    Google Scholar 

  • Dora SVVN, Polumahanthi S, Sarada MN (2014) Efficient callus induction protocol for Sorghum bicolor. Asian J Plant Sci Res 4:14–21

    Google Scholar 

  • Elhag H, Butler LG (1992) Effect of genotype, explant age and medium composition on callus production and plant regeneration from immature embryos of sorghum. Arab Gulf J Sci Res 10:109–119

    Google Scholar 

  • Elkonin LA, Lopushanskaya RF, Pakhomova NV (1995) Initiation and maintenance of friable, embryogenic callus of sorghum (Sorghum bicolor (L.) Moench) by amino acids. Maydica 40:153–157

    Google Scholar 

  • Fitch MMM, Moore PH (1990) Comparison of 2,4-D and picloram for selection of long-term totipotent green callus cultures of sugarcane. Plant Cell Tissue and Organ Culture 20:157–163. https://doi.org/10.1007/BF00041876

    Article  CAS  Google Scholar 

  • George L, Eapen S, Rao PS (1989) High frequency somatic embryogenesis and plant regeneration from immature inflorescence cultures of two Indian cultivars of sorghum (Sorghum bicolor L. Moench), Proc Indian Acad Sci (Plant Sci) 99:405–410

    Google Scholar 

  • Grootboom AW, Mkhonza NL, O’Kennedy MM, Chakauya E, Kunert K, Chikwamba RK (2010) Biolistic mediated sorghum (Sorghum bicolor L. Moench) transformation via mannose and bialaphos based selection systems. Int J Bot 6:89–94

    CAS  Google Scholar 

  • Grootboom AW, O’Kennedy MM, Mkhonza NL, Kunert K, Chakauya E, Chikwamba RK (2008) In vitro culture and plant regeneration of sorghum genotypes using immature zygotic embryos as explant source. Int J Bot 4:450–455

    CAS  Google Scholar 

  • Gupta S, Khanna VK, Singh R, Garg GK (2006) Strategies for overcoming genotypic limitations of in vitro regeneration and determination of genetic components of variability of plant regeneration traits in sorghum. Plant Cell Tissue Organ Cult 86:379–388

    Google Scholar 

  • Gurel S, Gurel E, Kaur R, Wong J, Meng L, Tan H-Q, Lemaux PG (2009) Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Rep 28:429–444

    CAS  PubMed  Google Scholar 

  • Gurel S, Gurel E, Miller TI, Lemaux PG (2012) Agrobacterium-mediated transformation of Sorghum bicolor using immature embryos. Transgenic Plant. Humana Press, New Jersey, pp 109–122

    Google Scholar 

  • Harshavardhan D, Rani TS, Ulaganathan K, Seetharama N (2002) An improved protocol for regeneration of Sorghum bicolor from isolated shoot apices. Plant Biotechnol 19:163–171

    CAS  Google Scholar 

  • Hiei Y, Komari T (2008) Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat Protoc 3(5):824–834

    CAS  PubMed  Google Scholar 

  • Ho WJ, Vasil IK (1983) Somatic embryogenesis in sugarcane (Saccharum officinarum L.) I. The morphology and physiology of callus formation and the ontogeny of somatic embryos. Protoplasma 118:169–180

    Google Scholar 

  • Hodkinson TR, Chase MW (2002) Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR. Ann Bot 89(5):627–636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howe A, Sato S, Dweikat I, Fromm M, Clemente T (2006) Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep 25:784–791

    CAS  PubMed  Google Scholar 

  • Hoy JW, Bischoff KP, Milligan SB, Gravois KA (2003) Effect of tissue culture explant source on sugarcane yield components. Euphytica 129:237–240

    CAS  Google Scholar 

  • Ishida Y, Hiei Y, Komari T (2007) Agrobacterium-mediated transformation of maize. Nat Protoc 2(7):1614–1621

    CAS  PubMed  Google Scholar 

  • Jeoung JM, Krishnaveni S, Muthukrishnan S, Trick HN, Liang GH (2002) Optimization of sorghum transformation parameters using genes for green fluorescent protein and ß-glucuronidase as visual markers. Hereditas 137:20–28

    CAS  PubMed  Google Scholar 

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modificationin Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jogeswar G, Ranadheer D, Anjaiah V, Kishor PBK (2007) High frequency somatic embryogenesis and regeneration in different genotypes of Sorghum bicolor (L.) Moench from immature inflorescence explants. In Vitro Cell Dev Biol Plant 43:159–166

    Google Scholar 

  • Kishore NS, Visarada KBRS, Lakshmi YA, Pashupatinath E, Rao SV, Seetharama N (2006) In vitro culture methods in sorghum with shoot tip as the explant material. Plant Cell Rep 25:174–182

    Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures. Theor Appl Genet 60:197–214

    CAS  PubMed  Google Scholar 

  • Li A, Jia S, Yobi A, Ge Z, Sato SJ, Zhang C, Angelovici R, Clemente TE, Holding DR (2018) Editing of an alpha-kafirin gene family increases digestibility and protein quality in sorghum. Plant Physiol 177:1425–1438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Campbell BC, Godwin ID (2014) Sorghum genetic transformation by particle bombardment. In: Henry R, Furtado A (eds) Cereal genomics. Methods in molecular biology (methods and protocols), vol 1099. Humana Press, Totowa, NJ, pp 219–234

    Google Scholar 

  • Liu G, Gilding EK, Godwin ID (2015) A robust tissue culture system for sorghum [Sorghum bicolor (L.) Moench]. S Afr J Bot 98:157–160

    CAS  Google Scholar 

  • Liu G, Godwin ID (2012) Highly efficient sorghum transformation. Plant Cell Rep 31:999–1007

    PubMed  PubMed Central  Google Scholar 

  • Mackinnon C, Gunderson G, Nabors MW (1986) Plant regeneration by somatic embryogenesis from callus cultures of sweet sorghum. Plant Cell Rep 5:349–351

    CAS  PubMed  Google Scholar 

  • Miller FR (1984) Registration of RTx430 sorghum parental line. Crop Sci 24(6):1224

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nguyen T-V, Thu TT, Claeys M, Angenon G (2007) Agrobacterium-mediated transformation of sorghum (Sorghum bicolor (L.) Moench) using an improved in vitro regeneration system. Plant Cell Tissue Organ Cult 91:155–164

    CAS  Google Scholar 

  • Nirwan RS, Kothari SL (2003) High copper levels improve callus induction and plant regeneration in Sorghum bicolor (L.) Moench. Vitro Cell Dev Biol Plant 39:161–164

    CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    CAS  PubMed  Google Scholar 

  • Pola SR, Mani NS (2006) Somatic embryogenesis and plantlet regeneration in Sorghum bicolor (L.) Moench, from leaf segments. J Cell Mol Biol 5:99–107

    Google Scholar 

  • Pola S, Mani NS, Ramana T (2009) Long-term maintenance of callus cultures from immature embryo of Sorghum bicolor. World J Agric Sci 5:415–421

    CAS  Google Scholar 

  • Promkhambut A, Younger A, Polthanee A, Akkasaeng C (2010) Morphological and physiological responses of sorghum (Sorghum bicolor L. Moench) to waterlogging. Asian J Plant Sci 9(4):183–193

    Google Scholar 

  • Raghuwanshi A, Birch RG (2010) Genetic transformation of sweet sorghum. Plant Cell Rep 29:997–1005

    CAS  PubMed  Google Scholar 

  • Rao AM, Kishor PBK (1989) In vitro plant regeneration potential from callus cultures of grain sorghum. Curr Sci 58:692–693

    Google Scholar 

  • Rao AM, Sree KP, Kishor K (1995) Enhanced plant regeneration in grain and sweet sorghum by asparagine, proline and cefotaxime. Plant Cell Rep 15:72–75

    CAS  PubMed  Google Scholar 

  • Sant RRP (2011) Development of a transformation system for sorghum (Sorghum bicolor L.). Thesis, Queensland University of Technology

  • Taparia Y, Gallo M, Altpeter F (2012) Comparison of direct and indirect embryogenesis protocols, biolistic gene transfer and selection parameters for efficient genetic transformation of sugarcane. Plant Cell Tissue Organ Cult 111(2):131–141

    CAS  Google Scholar 

  • Thomas E, King PJ, Potrykus I (1977) Shoot and embryo-like structure formation from cultured tissues of Sorghum bicolor. Naturwissenschaften 64(11):587–587

    Google Scholar 

  • USDA (2019) World Agriculture Production. http://www.fas.usda.gov/data/world-agricultural-production. Accessed 11 June 2019

  • Vanderlip RL (1993) How a sorghum plant develops. Kansas State University, Manhattan, KS. https://bookstore.ksre.ksu.edu/pubs/s3.pdf

    Google Scholar 

  • Vermerris W, Saballos A (2012) Genetic enhancement of sorghum for biomass utilization. In: Paterson AH (ed) Genomics of the Saccharinae. Springer, New York, NY, pp 391–425

    Google Scholar 

  • Vermerris W, Saballos A, Ejeta G, Mosier NS, Ladisch MR, Carpita NC (2007) Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci 47(S3):S147–S153

    Google Scholar 

  • Wang K, Frame B (2009) Biolistic gun-mediated maize genetic transformation. In: Scott MP (ed) Transgenic maize. Humana Press, Totowa, NJ, pp 29–45

    Google Scholar 

  • Wei ZM, Xu ZH (1993) Regeneration of plants from protoplasts of sorghum (Sorghum vulgare). In: Bajaj YPS (ed) Plant Protoplasts and genetic engineering IV. Biotechnology in agriculture and forestry, vol 23. Springer, Berlin, pp 123–131

    Google Scholar 

  • Wernicke W, Brettell R (1980) Somatic embryogenesis from Sorghum bicolor leaves. Nature 287:138–139

    Google Scholar 

  • Wu E, Lenderts B, Glassman K, Berezowska-Kaniewska M, Christensen H, Asmus T, Zhen S, Chu U, Cho M-J, Zhao Z-Y (2014) Optimized Agrobacterium-mediated sorghum transformation protocol and molecular data of transgenic sorghum plants. In Vitro Cell Dev Biol Plant 50:9–18

    PubMed  Google Scholar 

  • Zhao Z-Y, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44:789–798

    CAS  PubMed  Google Scholar 

  • Zhong H, Wang W, Sticklen M (1998) In vitro morphogenesis of Sorghum bicolor (L.) Moench: Efficient plant regeneration from shoot apices. J Plant Physiol 153:719–726

    CAS  Google Scholar 

Download references

Acknowledgements

TNS gratefully acknowledges a CAPES (Coordination for the Improvement of Higher Education Personnel) graduate fellowship provided by the Brazilian Ministry of Education (BEX 11883-13-8), and funding from the University of Florida Genetics Institute. MEK is grateful for financial support from the UF Plant Molecular & Cellular Biology program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfred Vermerris.

Additional information

Editorial Responsibiility: Sergey V. Dolgov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, T.N., Kelly, M.E. & Vermerris, W. Use of Sorghum bicolor leaf whorl explants to expedite regeneration and increase transformation throughput. Plant Cell Tiss Organ Cult 141, 243–255 (2020). https://doi.org/10.1007/s11240-020-01783-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-020-01783-9

Keywords

Navigation