Skip to main content
Log in

Morphological, physiological and genomic comparisons between diploids and induced tetraploids in Anemone sylvestris L.

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The objective of this research was to induce mitotic chromosome doubling in Anemone sylvestris L. The mitosis inhibitor oryzalin was directly added to the induction medium at 1, 2, 5, 10 and 15 μM for 8, 10 or 12 weeks of cultivation. Three tetraploid plants (2n = 4x = 32), 0.8% (polyploidization efficiency), were obtained from diploid plants (2n = 2x = 16) in three treatments (1 μM for 10 weeks, 5 μM for 8 weeks and 8 μM for 10 weeks). Ploidy level was confirmed by flow cytometry. Morphological characteristics (e.g. flower diameter, total plant height, leaf area) and chlorophyll content differences between diploid and tetraploid A. sylvestris were observed together with polyphenol content and antioxidant activity. The inter primer binding sites markers were used for evaluation of polymorphism. New genotypes with different morphological and biological characteristics were obtained through somatic polyploidization. The tetraploid plants were stronger, more vigorous and had an early flowering, which is essential for its use as an ornamental plant. The iPBS analysis showed unique amplicons that can be used for the purposes of molecular identification of tetraploid plants of A. sylvestris in the future. The results demonstrate the first report of in vitro induction of tetraploids of A. sylvestris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allum JF, Bringloe DH, Roberts AV (2007) Chromosome doubling in Rosa rugosa Thunb. hybrid by exposure of in vitro nodes to oryzalin: the effects of node length, oryzalin concentration and exposure time. Plant Cell Rep 26:1977–1984

    Article  CAS  PubMed  Google Scholar 

  • Bényei Himmer M, Höhn M, Facsar G, Ranunculaceae (1997) Reproductive and vegetative propagation strategies, multiplication experiments on a perennial plant Anemone sylvestris L. (fam). Kertészeti tudomány (Hortic Sci) 29(1–2):82–87

    Google Scholar 

  • Boo HO, Shin JH, Kim YS, Park HJ, Kim HH, Kwon SJ, Woo SH (2013) Comparative antioxidant enzyme activity of diploid and tetraploid Platycodon grandiflorum by different drying methods. Korean J Plant Res 26:389–396

    Article  Google Scholar 

  • Condelli N, Caruso MC, Galgano F, Russo D, Milella L, Favati F (2015) Prediction of the antioxidant activity of extra virgin olive oils produced in the Mediterranean area. Food Chem 177:233–239

    Article  CAS  PubMed  Google Scholar 

  • Dekdouk N, Malafronte N, Russo D, Faraone I, De Tommasi N, Ameddah S, Severino L, Milella L (2015) Phenolic compounds from Olea europaea L. possess antioxidant activity and inhibit carbohydrate metabolizing enzymes in vitro. Evid Based Complement Alternat Med 2015:684925

    Article  PubMed  PubMed Central  Google Scholar 

  • Denaeghel H, Van Laere K, Leus L, Van Huylenbroeck J, Van Labeke MC (2015) Induction of Tetraploids in Escallonia spp. XXV interantional eucarpia symposium section ornamentals: crossing borders, book series. Vol. 1087, Melle, Belgium, pp 453–458

    Google Scholar 

  • Dhooghe E, Denis S, Eeckhaut T, Reheul D, Van Labeke MC (2009a) In vitro induction of tetraploids in ornamental Ranunculus. Euphytica 168:33–40

    Article  CAS  Google Scholar 

  • Dhooghe E, Grunewald W, Leus L, Van Labeke MC (2009b) In vitro polyploidisation of Helleborus species. Euphytica 165:89–95

    Article  Google Scholar 

  • Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck (2011) Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tissue Organ C 104:359–373

    Article  Google Scholar 

  • Escandón SA, Alderete ML, Hagiwara JC (2007) In vitro polyploidization of Mercardonia tenella, a native plant from South America. Sci Hortic 115:56–61

    Article  Google Scholar 

  • Ewald D, Ulrich K, Naujoks G, Schröder MB (2009) Induction of tetraploid polar and black locust plants using colchicine: Chloroplast number as an early marker for selecting polyploids in vitro. Plant Cell Tissue Organ C 99:353–357

    Article  Google Scholar 

  • Fernandes F, Ramalhosa E, Pires P, Verdial J, Valentão P, Andrade P, Bento A, Pereira JA (2013) Vitis vinifera leaves towards bioactivity. Ind Crops Prod 43:434–440

    Article  CAS  Google Scholar 

  • Gantait S, Mandal N, Bhattacharyya S, Das PK (2011) Induction and identification of tetraploids using in vitro colchicine treatment of Gerbera jamesonii Bolus cv. Sciella. Plant Cell Tissue Organ C 106:485–493

    Article  CAS  Google Scholar 

  • Grandbastien MA, Audeon C, Bonnivard E, Casacuberta JM, Chalhoub B, Costa AP, Le QH, Melayah D, Petit M, Poncet C, Tam SM, Van Sluys MA, Mhiri C (2005) Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet Genome Res 110:229–241

    Article  CAS  PubMed  Google Scholar 

  • Greplova M, Polzerova H, Domkarova J (2009) Intra- and interspecific crosses of Solanum materials after mitotic polyploidization in vitro. Plant Breed 128:651–657

    Article  Google Scholar 

  • Hannweg K, Sippel A, Bertling I (2013) A simple and effective method for the micropropagation and in vitro induction of polyploidy and the effect on floral characteristics of the South African iris, Crocosmia aurea. S Afr J Bot 88:367–372

    Article  CAS  Google Scholar 

  • Hejný S, Slavík B (1988) Flora of the Czech Republic 1 (in Czech). Academia, Prague

    Google Scholar 

  • Hendry GAF, Price AH (1993) Stress indicators: chlorophylls and carotenoids. In: Hendry GAF, Grime JP (eds) Methods in comparative plant ecology. Chapman & Hall, London, pp 148–152

    Chapter  Google Scholar 

  • Hoskovec L (2015) Anemone sylvestris L. http://botany.cz/cs/anemone-sylvestris. Accessed 13 Mar 2015

  • Kaensaksiri T, Soontornchainaksaeng P, Soonthornchareonnon N, Prathanturarug S (2011) In vitro induction of polyploidy in Centella asiatica (L.) Urban. Plant Cell Tissue Organ C 107:187–194

    Article  Google Scholar 

  • Kalendar R, Antonius K, Smýkal P, Schulman AH (2010) iPBS: a universal method for DNA Fingerprinting and retrotransposon isolation. Theor Appl Genet 121:1419–1430

    Article  CAS  PubMed  Google Scholar 

  • Khosravi P, Kermani MJ, Nematzadeh GA, Bihamta MR, Yokoya K (2008) Role of mitotic inhibitors and genotype on chromosome doubling of Rosa. Euphytica 160(2):267–275

    Article  CAS  Google Scholar 

  • Kwiatkowska-Falinska AJ, Falinski JB (2007) Conditions of the occurrence of Anemone sylvestris in a kettle hole in north-eastern Poland. Acta Soc Bot Pol 76(2):133–140

    Article  Google Scholar 

  • Lapiņa L, Grauda D, Rashal I (2012) Using retrotransposon-based molecular markers for analysis of genetic variability in Latvian population of Alfalfa. Acta Biol Univ Daugavp 12(1):84–87

    Google Scholar 

  • Liao T, Cheng S, Zhu X, Min Y, Kang X (2016) Effect of triploid status on growth, photosynthesis, and leaf area in Populus. Trees 30:1137–1147

    Article  CAS  Google Scholar 

  • Lloyd G, McCown B (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Proc Int Plant Propag Soc 30:421–427

    Google Scholar 

  • Madani H, Hosseini B, Deghan E, Rezaei-Chiyaneh E (2015) Enhanced production of scopolamine in induced autotetraploid plants of Hyoscyamus reticulatus L. Acta Physiol Plant 37:55–65

    Article  Google Scholar 

  • Mathura S, Fossey A, Beck SL (2006) Comparative study of chlorophyll content in diploid and tetraploid black wattle (Acacia mearnsii). Forestry 79(4):381–388

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ovesná J, Kučera L, Vaculová K, Milotová J, Snape JW, Wenzl P, Huttner E, Kilian A, Martelli G, Milella L (2013) Analysis of the genetic structure of a barley collection using DNA diversity array technology (DArT). Plant Mol Biol Rep 31:280–288

    Article  Google Scholar 

  • Pansuksan K, Sangthong R, Nakamura I, Mii M, Supaibulwatana K (2014) Tetraploid induction of Mitracarpus hirtus L. by colchicine and its characterization including antibacterial activity. Plant Cell Tissue Organ C 117:381–391

    Article  CAS  Google Scholar 

  • Podwyszynska M (2012) In Vitro tetraploid induction in Tulip (Tulipa gesneriana L.). Acta Hortic 961:391–396

    Article  Google Scholar 

  • Rêgo MM, Rêgo ER, Bruckner CH, Finger FL, Otoni WC (2011) In vitro induction of autotetraploids from diploid yellow passion fruit mediated by colchicine and oryzalin. Plant Cell Tissue Organ C 107:451–459

    Article  Google Scholar 

  • Russo D, Bonomo M, Salzano G, Martelli G, Milella L (2012) Nutraceutical properties of citrus clementina juices. Pharmacologyonline 1:84–93

    CAS  Google Scholar 

  • Russo D, Valentão P, Andrade PB, Fernandez EC, Milella L (2015a) Evaluation of antioxidant, antidiabetic and anticholinesterase activities of Smallanthus sonchifolius landraces and correlation with their phytochemical profiles. Int J Mol Sci 16:17696–17718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo D, Malafronte N, Frescura D, Imbrenda G, Faraone I, Milella L, Fernandez E, De Tommasi N (2015b) Antioxidant activities and quali-quantitative analysis of different Smallanthus sonchifolius [(Poepp. and Endl.) H. Robinson] landrace extracts. Nat Prod Res 29(17):1673–1677

    Article  CAS  PubMed  Google Scholar 

  • Saha S, Adhikari S, Dey T, Ghosha P (2016) RAPD and ISSR based evaluation of genetic stability of micropropagated plantlets of Morus alba L. variety S-1. Meta Gene 7:7–15

    Article  PubMed  Google Scholar 

  • Sakhanokho HF, Rajasekaran K, Kelley RY, Islam-Faridi N (2009) Induced polyploidy in diploid ornamental ginger (Hedychium muluense R. M. Smith) using colchicine and oryzalin. Hortscience 44(7):1809–1814

    Google Scholar 

  • Sanwal S, Rai N, Singh J, Buragohain J (2010) Antioxidant phytochemicals and gingerol content in diploid and tetraploid clones of ginger (Zingiber officinale Roscoe). Sci Hortic 124:280–285

    Article  CAS  Google Scholar 

  • Šedivá J, Zahumenická P, Fernández Cusimamani E (2017) An efficient in vitro propagation protocol for snowdrop anemone (Anemone sylvestris L.). Hortic Sci 44(4) (in press)

  • Shao J, Chen C, Deng X (2003) In vitro induction of tetraploid in pomegranate (Punica granatum). Plant Cell Tissue Organ C 75:241–246

    Article  CAS  Google Scholar 

  • Sun M, Yin X, Shi F, Li L, Li M, Li L, Xiao H (2015) Development of eighteen microsatellite markers in Anemone amurensis (Ranunculaceae) and cross-amplification in congeneric species. Int J Mol Sci 13(4):4889–4895

    Google Scholar 

  • Takeda S, Sugimoto K, Otsuki H, Hirochika H (1998) Transcriptional activation of the tobacco retrotransposon Tto1 by wounding and methyl jasmonate. Plant Mol Biol 36:365–376

    Article  CAS  PubMed  Google Scholar 

  • Tang ZQ, Chen DL, Song ZJ, He YC, Cai DT (2010) In vitro induction and identification of tetraploid plants of Paulownia tomentosa. Plant Cell Tissue Organ C 102:213–220

    Article  Google Scholar 

  • Tiwari JK, Chandel P, Gupta S, Gopal J, Singh BP, Bhardwaj V (2013) Analysis of genetic stability of in vitro propagated potato microtubers using DNA markers. Physiol Mol Biol Plants 19(4):587–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trojak-Goluch A, Skomra U (2013) Artificially induced polyploidisation in Humulus lupulus L. and its effect on morphological and chemical traits. Breed Sci 63:393–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turcich MP, Bokharririza A, Hamilton DA, He CP, Messer W (1996) PREM-2, a copia-like retroelement in maize is expressed preferentially in early microspores. Sex Plant Reprod 9:65–74

    Article  Google Scholar 

  • Vichiato MRM, Vichiato M, Pasqual M, Almendagna RF, Castro DM (2014) Morphological effects of induced polyploidy in Dendrobium nobile Lindl. (Orchidaceae). Crop Breed Appl Biotechnol 14:154–159

    Article  Google Scholar 

  • Viehmannová I, Fernández Cusimamani E, Bechyne M, Vyvadilová M, Greplová M (2009) In vitro induction of polyploidy in yacon (Smallanthus sonchifolius). Plant Cell Tissue Organ C 97(1):21–25

    Article  Google Scholar 

  • Voronova A, Jansons Ā, Ruņģis D (2011) Expression of retrotransposon-like sequences in Scots pine (Pinus sylvestris) in response to heat stress. Environ Exp Biol 9:121–127

    Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller WA (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Dai H, Xiao M, Liu X (2008) In vitro induction of tetraploids in Phlox subulata L. Euphytica 159:59–65

    Article  Google Scholar 

  • Zhu J, Tremblay T, Liang Y (2012) Comparing SPAD and atLEAF values for chlorophyll assessment in crop species. Can J Soil Sci 92(4):645–648

    Article  Google Scholar 

  • Žiarovská J, Fernández EC, Bežo M (2013) Developing the iPBS strategy for yacon germplasm evaluation. J Microbiol Biotechnol Food Sci 2:1967–1979

    Google Scholar 

  • Žiarovská J, Bežo M, Hrdličková M, Fernández E (2014) Standardization and reproducibility of random marker based analysis of micropropagated crimson beebalm. Genetika 46:855–864

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Project Nos. 20175009 and 20115003 of University Internal Grant Agency, Czech University of Life Sciences Prague, by European Community under Project Nos. 26220220180 Building Research Centre “AgroBioTech”, by Project Nos. 17-25536Y of the Czech Science Foundation and by Silva Tarouca Research Institute for Landscape and Ornamental Gardening (the institutional support VUKOZ-IP-00027073). The authors thank to prof. Jaroslav Doležel and Jana Čížková, Ph.D. from Institute of Experimental Botany, The Czech Academy of Sciences, the Czech Republic, for their help in the flow-cytometric analyses.

Author information

Authors and Affiliations

Authors

Contributions

PZ and EF established in vitro culture, realized induced polyploidization, flow cytometry analyses and morphological observations in vivo. JŠ transferred plants in ex vitro conditions and realized morphological analyses. JŽ was responsible for iPBS analyses. JLRS and DMF assessed chlorophyll content and made statistical analyses. DR and LM assessed chemical analysis and antioxidant activity. EF and LM designed the workflow of the experiments.

Corresponding author

Correspondence to Eloy Fernández.

Additional information

Communicated by Sergio J. Ochatt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahumenická, P., Fernández, E., Šedivá, J. et al. Morphological, physiological and genomic comparisons between diploids and induced tetraploids in Anemone sylvestris L.. Plant Cell Tiss Organ Cult 132, 317–327 (2018). https://doi.org/10.1007/s11240-017-1331-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1331-3

Keywords

Navigation