Skip to main content
Log in

Enhanced production of metabolites by elicitation in Opuntia ficus-indica, Opuntia megacantha, and Opuntia streptacantha callus

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Callus from Opuntia streptacantha (cv. Tuna loca), Opuntia megacantha (cv. Rubí reina), and Opuntia ficus-indica (cv. Rojo vigor) were exposed to jasmonic acid (JA) and abiotic stress (drought and UV light) to improve the metabolite production. The callus growth curves, phenolic acids and flavonoids content, antioxidant activity and phenylalanine ammonia lyase (PAL) activity were analyzed under normal and stress conditions. In O. streptacantha callus, the phenolics concentration increased 1.6 to 3 times times in presence of 5% PEG or after irradiation with UV light for 240 min, respectively, while flavonoids triplicate with UV light. A significant increase in antioxidant activity was observed in calli from the three Opuntia species in media with 50 µM JA. The relationships between metabolites/PAL activity, and metabolites/antioxidant activity were analyzed using a surface response methodology. Results showed that PAL activity, induced with PEG and UV, correlated with flavonoids content in O. megacantha and O. ficus-indica calli; PAL activity was related to both flavonoids and phenolics compounds in O. ficus-indica and O. megacantha calli exposed to JA, but only to flavonoids in O. streptacantha callus. In general, the JA stimulated simultaneously the metabolic pathways for phenolics and flavonoids synthesis, while abiotic stress induced mainly flavonoids route. As the stressed Opuntia calli exhibited as high antioxidant activity as cladodes, they are a promising system for research on antioxidant biosynthesis and/or to identify new compounds with antioxidant properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdullahil Baque M, Lee E, Paek K (2010) Medium salt strength induced changes in growth, physiology and secondary metabolite content in adventitious roots of Morinda citrifolia: the role of antioxidant enzymes and phenylalanine ammonia lyase. Plant Cell Rep 29:685–694

    Article  CAS  PubMed  Google Scholar 

  • Astello-García MG, Robles-Martínez M, Barba-de la Rosa AP, Santos-Díaz MS (2013) Establishment of callus from non-domesticated species Opuntia robusta Wendl. and phenolics compounds production. Afr J Biotechnol 12:3204–3207

    Google Scholar 

  • Astello-García MG, Cervantes I, Nair V, Reyes-Agüero A, Santos-Díaz MS, Guéraud F, Negre-Salvayre A, Rossignol M, Cisneros-Zevallos L, Barba-de la Rosa AP (2015) Chemical composition and phenolic compounds profile of Opuntia ssp. cultivars with different domestication grade. J Food Compos Anal 43:119–130

    Article  Google Scholar 

  • Baenas N, Garcia-Viguera C, Moreno D (2014) Elicitation: a tool for enriching the bioactive composition of foods. Molecules 19:13541–13563

    Article  PubMed  Google Scholar 

  • Blum A (2008) Use of PEG to induce and control plant water deficit in experimental hydroponics culture. Focus on form: Retrieved from http://www.plantstress.com/methods/PEG.htm

  • Caruso M, Curro S, Las Casas G, La Malfa S, Gentile A (2010) Microsatellite markers help to assess genetic diversity among Opuntia ficus-indica cultivated genotypes and their relation with related species. Plant Syst Evol 290:85–97

    Article  Google Scholar 

  • Chaonan Li, Carl KYN, Liu-Min F (2015) MYB transcription factors, active players in abiotic stress signaling. Environ Exp Bot 114:80–91

    Article  Google Scholar 

  • Crupi P, Pichierri A, Basile T, Antonacci D (2013) Postharvest stilbenes and flavonoids enrichment of table grape cv Redglobe (Vitis vinifera L.) as affected by interactive UV-C exposure and storage conditions. Food Chem 141:802–808

    Article  CAS  PubMed  Google Scholar 

  • Dikilitas M (2012) Purification of phenylalanine ammonia lyase (PAL) and peroxidase (POX) enzymes obtained from lucerne (Medicago sativa L. cv. Vertus) following inoculation with Verticillium albo-atrum. J Res Biol 2:355–361

    Google Scholar 

  • Dixon RA, Pavia NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari S (2010) Biological elicitor of plant secondary metabolites: mode of action and use in the production of nutraceutics. In: Giardi MT, Rea G, Berra B (eds) Bio-farms for nutraceuticals: functional food and safety control by biosensors, chapter 12. Springer, New York, pp 152–166

  • Gadzovska S, Maury S, Delaunay A, Spasenoski M, Joseph C, Hagege D (2007) Jasmonic acid elicitation of Hypericum perforatum L. cell suspensions and effects on the production of phenylpropanoids and naphtodianthrones. Plant Cell Tiss Organ Cult 89:1–13

    Article  CAS  Google Scholar 

  • Garoby-Salom S, Guéraud F, Camaré C, Barba-de la Rosa AP, Rossignol M, Santos-Díaz MS, Salvayre R, Negre-Salvayre A (2016) Dietary cladode powder from wild type and domesticated Opuntia species reduces atherogenesis in apoE knock-out mice. J Physiol Biochem 72:59–70

    Article  CAS  PubMed  Google Scholar 

  • Hao G, Jiang X, Feng L, Tao R, Li Y, Huang L (2016) Cloning, molecular characterization and functional analysis of a putative R2R3-MYB transcription factor of the phenolic acid biosynthetic pathway in S. miltiorrhiza Bge. f. alba. Plant Cell Tiss Organ Cult 124:151–168

    Article  CAS  Google Scholar 

  • Inostroza-Blancheteau C, Reyes-Díaz M, Arellano A, Latsague M, Acevedo P, Loyola R, Arce-Johnson P, Alberdi M (2014) Effects of UV-B radiation on anatomical characteristics, phenolic compounds and gene expression of the phenylpropanoid pathway in highbush blueberry leaves. Plant Physiol Biochem 85:85–95

    Article  CAS  PubMed  Google Scholar 

  • Karabourniotis G, Liakopoulos G, Nikolopoulos D, Bresta P, Stravroulaki V, Sumbele S (2014) Carbon gain vs. water saving, growth vs defense: two dilemas with soluble phenols as a joker. Plant Sci 227:21–27

    Article  CAS  PubMed  Google Scholar 

  • Keller J, Camaré C, Bernis C, Astello-García M, Barba-de la Rosa AP, Rossignol M, Santos-Díaz MS, Salvayre R, Negre-Salvayre A, Guéraud F (2015) Antiatherogenic and antitumoral properties of Opuntia cladodes: inhibition of low density lipoprotein oxidation by vascular cells, and protection against the cytotoxicity of lipid oxidation product 4-hydroxynonenal in a colorectal cancer cellular model. J Physiol Biochem 71 (3):577–587

    Article  PubMed  Google Scholar 

  • Kováčik J, Bačkor M (2007) Phenylalanine ammonia-lyase and phenolic compounds in chamomile tolerance to cadmium and copper excess. Water Air Soil Pollut 185:185–193

    Article  Google Scholar 

  • Meda A, Lamien CE, Romito M, Millogo J, Nacoulma OG (2005) Determination of the total phenolic, flavonoid and proline contents in Bukinafasan honey as well as their radical scavenging activity. Food Chem 91:571–577

    Article  CAS  Google Scholar 

  • Perez-Alonso N, Capote A, Gerth A, Jiménez E (2012) Increased cardenolides production by elicitation of Digitalis lanata. Plant Cell Tiss Organ Cult 110:153–162

    Article  CAS  Google Scholar 

  • Pichereaux C, Hernández-Domínguez EE, Santos-Díaz MS, Reyes-Agüero A, Astello-García M, Guéraud F, Negre-Salvayre A, Schultz O, Rossignol M, Barba-de la Rosa AP (2016) Comparative shotgun proteomic analysis of wild and domesticated Opuntia spp. species shows a metabolic adaptation through domestication. J Proteom 143:353–364

    Article  CAS  Google Scholar 

  • Piga A (2004) Cactus pear: a fruit of nutraceutical and functional importance. JPACA 6:9–22

    Google Scholar 

  • Prasch CM, Sonnewald U (2015) Signaling events in plants: stress factors in combination change the picture. Environ Exp Bot 114:4–14

    Article  CAS  Google Scholar 

  • Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720–1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renuka S, Balusamy D, Rahimi S, Sukweenadhi J, Kim YJ, Yang DC (2015) Exogenous methyl jasmonate prevents necrosis caused by mechanical wounding and increases terpenoid biosynthesis in Panax ginseng. Plant Cell Tiss Organ Cult 123:341–348

    Article  Google Scholar 

  • Reyes-Agüero JA, Aguirre Rivera JR, Flores Flores JL (2005) Variación morfológica de Opuntia (Cactacea) en relación con su domesticación en la Altiplanicie Meridional de México. Interciencia 30:476–484

    Google Scholar 

  • Rizzo AM, Berselli P, Zava S, Montorfano G, Negroni M, Corsetto P, Berra B (2010) Endogenous antioxidants and radical scavengers. In: Gigardi MT, Rea G, Berra B (eds) Bio-farms for nutraceuticals: functional food and safety control by biosensors, chapter 5. Springer, New York, pp 52–67

  • Robles-Martínez M, Barba-de la Rosa AP, Guéraud F, Negre-Salvayre A, Rossignol M, Santos-Díaz MS (2016) Establishment of callus and cell suspensions of wild and domesticated Opuntia species: study on their potential as a source of metabolite production. Plant Cell Tiss Organ Cult 124:181–189

    Article  Google Scholar 

  • Santos-Díaz MS, Ochoa Alejo N (1994) Effect of water stress on growth, osmotic potential and solute accumulation in cell cultures from chili pepper (a mesophyte) and creosote bush (a xerophyte). Plant Sci 96:21–29

    Article  Google Scholar 

  • Santos-Zea L, Gutierrez-Uribe JA, Serna-Saldivar SO (2011) Comparative analyses of total phenols, antioxidant activity, and flavonol glycoside profile of cladode flours from different varieties of Opuntia spp. J Agri Food Chem 59(13):7054–7061

    Article  CAS  Google Scholar 

  • Su H, Jiang H, Li Y (2015) Effects of PAL and ICS on the production of total flavonoids, daidzein and puerarin in Pueraria thomsonii Benth suspension cultures under low light stress. J Plant Biochem Biotechnol 24:34–41

    Article  Google Scholar 

  • Swiatek A, Lenjou M, Van Bockstaele D, Inze D, Van Onckelen H (2002) Differential effect of jasmonic acid and abscisic acid on cell cycle progression in tobacco BY-2 cells. Plant Physiol 128:201–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trivedi S, Galiba G, Sankhla N, Erdei L (1991) Responses to osmotic and NaCl stress of wheat varieties differing in drought and salt tolerance in callus cultures. Plant Sci 73:227–232

    Article  CAS  Google Scholar 

  • Waterhouse AL (2002) Determination of total phenolics. In: Wrolstad RE (ed) Current protocols in food analytical chemistry. Wiley, New York

    Google Scholar 

  • Way HM, Kazan K, Mitter N, Goulter KC, Birch RG, Manners JM (2002) Constitutive expression of a phenylalanine ammonia-lyase gene from Stylosanthes humilis in transgenic tobacco leads to enhanced disease resistance but impaired plant growth. Physiol Mol Plant Pathol 60:275–282

    Article  CAS  Google Scholar 

  • Yua KW, Gaob W, Hahna EJ, Paek KY (2002) Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer. Biochem Eng J 11:211–215

    Article  Google Scholar 

  • Zou DM, Brewer M, Garcia F, Feugang JM, Wang J, Zang R, Liu H, Zou CP (2005). Cactus pear: a natural product in cancer chemoprevention. Nutr J 4:25

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to CONACYT for the Grant No. 142873 (Bilateral Mexico-France Project) and for the fellow no. 247838 to NG Camarena-Rangel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María del Socorro Santos-Díaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camarena-Rangel, N.G., Barba-De la Rosa, A.P., Herrera-Corredor, J.A. et al. Enhanced production of metabolites by elicitation in Opuntia ficus-indica, Opuntia megacantha, and Opuntia streptacantha callus. Plant Cell Tiss Organ Cult 129, 289–298 (2017). https://doi.org/10.1007/s11240-017-1177-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1177-8

Keywords

Navigation