Skip to main content
Log in

Genetic transformation of grape varieties and rootstocks via organogenesis

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

A protocol was standardized to regenerate six grape cultivars through meristematic bulk (MB) induction, which was used for genetic transformation. Meristematic bulk induction worked best with Vitis vinifera ‘Thompson Seedless’ (98.4 %), followed by ‘Chardonnay’ (97.6 %), ‘Redglobe’ (90.2 %) and ‘Cabernet Sauvignon’ (86.2 %), and was less successful with Vitis rupestris ‘St. George’ (85.4 %) and ‘101-14 Millardet et de Grasset (Vitis riparia × V. rupestris)’ (79.6 %). Benzylaminopurine and naphthaleneacetic acid was the most effective combination of cytokinin and auxin for MB formation. 100 µg/ml kanamycin was a better antibiotic selection agent than 2.0 µg/ml hygromycin during transformation. The expression of green fluorescent protein was evaluated with in vitro leaves and roots. Transformation efficiency using meristematic slices was a function of the genotype. Transformation efficiency was greatest in Chardonnay (51.7 %), followed by Thompson Seedless (42.3 %), St. George (41.6 %), Redglobe (40 %), Cabernet Sauvignon (35.6 %) and 101-14 Mgt (29.9 %). This study found that MB induction was a fast and simple alternative for genetic transformation of grape cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BA:

6-Benzylaminopurine

NAA:

α-Naphthaleneacetic acid

TDZ:

Thidiazuron

MB:

Meristematic bulk

References

  • Agüero CB, Meredith CP, Dandekar AM (2006) Genetic transformation of Vitis vinifera L. cvs Thompson Seedless and Chardonnay with the pear PGIP and GFP encoding genes. Vitis 45:1–8

    Google Scholar 

  • Barlass M, Skene K (1980) Studies on the fragmented shoot apex of grapevine: II. Factors affecting growth and differentiation in vitro. J Exp Bot 31:489–495

    Article  CAS  Google Scholar 

  • Bertsch C, Kieffer F, Maillot P, Farine S, Butterlin G, Merdinoglu D, Walter B (2005) Genetic chimerism of Vitis vinifera cv. Chardonnay 96 is maintained through organogenesis but not somatic embryogenesis. BMC Plant Biol 5:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouquet A, Torregrosa L, Iocco P, Thomas MR (2007) Grapevine (Vitis vinifera L.). In: Wang K (ed) Agrobacterium protocols, vol 2. Springer, New York, pp 273–285

    Google Scholar 

  • Chaïb J, Torregrosa L, Mackenzie D, Corena P, Bouquet A, Thomas MR (2010) The grape microvine: a model system for rapid forward and reverse genetics of grapevines. Plant J 62:1083–1092

    PubMed  Google Scholar 

  • Colby SM, Meredith CP (1990) Kanamycin sensitivity of cultured tissues of Vitis. Plant Cell Rep 9:237–240

    Article  CAS  PubMed  Google Scholar 

  • Dutt M, Li Z, Dhekney S, Gray D (2007) Transgenic plants from shoot apical meristems of Vitis vinifera L. “Thompson Seedless” via Agrobacterium-mediated transformation. Plant Cell Rep 26:2101–2110

    Article  CAS  PubMed  Google Scholar 

  • Favre J (1977) Premiers resultats concernant l’obtention in vitro de neoformations caulinaires chez la vigne. Annales de l’Amélioration des Plantes 27:151–169

    CAS  Google Scholar 

  • Franks T, He DG, Thomas M (1998) Regeneration of transgenic shape Vitis vinifera L. Sultana plants: genotypic and phenotypic analysis. Mol Breed 4:321–333

    Article  CAS  Google Scholar 

  • Franks T, Botta R, Thomas M, Franks J (2002) Chimerism in grapevines: implications for cultivar identity, ancestry and genetic improvement. Theor Appl Genet 104:192–199

    Article  CAS  PubMed  Google Scholar 

  • Gray DJ (1995) Somatic embryogenesis in grape. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants. Springer, New York, pp 191–217. doi:10.1007/978-94-011-0491-3_12

    Chapter  Google Scholar 

  • Gray DJ, Li ZT, Dhekney SA (2014) Precision breeding of grapevine (Vitis vinifera L.) for improved traits. Plant Sci 228:3–10

    Article  CAS  PubMed  Google Scholar 

  • Hanson B, Engler D, Moy Y, Newman B, Ralston E, Gutterson N (1999) A simple method to enrich an Agrobacterium transformed population for plants containing only T-DNA sequences. Plant J 19:727–734

    Article  CAS  PubMed  Google Scholar 

  • Ibáñez A, Agüero CB, Escobar MA, Dandekar AM (2011) Transgenic fruit and nut tree crops review. In: Mou B, Scorza R (eds) Transgenic horticultural crops: challenges and opportunities. Taylor & Francis Inc, Washington, DC, pp 1–29. doi:10.1201/b10952-2

    Chapter  Google Scholar 

  • Iocco P, Franks T, Thomas M (2001) Genetic transformation of major wine grape cultivars of Vitis vinifera L. Transgenic Res 10:105–112

    Article  CAS  PubMed  Google Scholar 

  • Kiselev K, Dubrovina A, Veselova M, Bulgakov V, Fedoreyev S, Zhuravlev YN (2007) The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells. J Biotechnol 128:681–692

    Article  CAS  PubMed  Google Scholar 

  • Kurmi U, Sharma D, Tripathi M, Tiwari R, Baghel B, Tiwari S (2011) Plant regeneration of Vitis vinifera (L) via direct and indirect organogenesis from cultured nodal segments. J Agric Technol 7:721–737

    Google Scholar 

  • Li Z, Dhekney S, Dutt M, Van Aman M, Tattersall J, Kelley K, Gray D (2006) Optimizing Agrobacterium-mediated transformation of grapevine. In Vitro Cell Dev Biol Plant 42:220–227

    Article  CAS  Google Scholar 

  • López-Pérez A-J, Velasco L, Pazos-Navarro M, Dabauza M (2008) Development of highly efficient genetic transformation protocols for table grape Sugraone and Crimson Seedless at low Agrobacterium density. Plant Cell, Tissue Organ Cult 94:189–199

    Article  Google Scholar 

  • Maqsood A, Khan N, Hafiz IA, Abbasi NA, Anjum MA, Hussain S (2015) Effect of various factors on the efficiency of Agrobacterium-mediated transformation of grape (Vitis vinifera L.). Vegetos Int J Plant Res 28:171–178

    Google Scholar 

  • Martinelli L, Mandolino G (1994) Genetic transformation and regeneration of transgenic plants in grapevine (Vitis rupestris S.). Theor Appl Genet 88:621–628

    Article  CAS  PubMed  Google Scholar 

  • Martinelli L, Mandolino G (2001) Transgenic grapes (Vitis species). In: Bajaj YPS (ed) Transgenic crops II. Springer, New York, pp 325–338. doi:10.1007/978-3-642-56901-2_21

    Chapter  Google Scholar 

  • Mezzetti B, Pandolfini T, Navacchi O, Landi L (2002) Genetic transformation of Vitis vinifera via organogenesis. BMC Biotechnol 2:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Mullins MG, Srinivasan C (1976) Somatic embryos and plantlets from an ancient clone of the grapevine (cv. Cabernet-Sauvignon) by apomixis in vitro. J Exp Bot 27:1022–1030

    Article  Google Scholar 

  • Mullins MG, Tang FA, Facciotti D (1990) Agrobacterium-mediated genetic transformation of grapevines: transgenic plants of Vitis rupestris Scheele and buds of Vitis vinifera L. Nat Biotechnol 8:1041–1045

    Article  CAS  Google Scholar 

  • Mulwa R, Norton M, Farrand S, Skirvin R (2015) Agrobacterium-mediated transformation and regeneration of transgenic’Chancellor’wine grape plants expressing the tfd A gene. Vitis 46:110–115

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nicholson KL, Tarlyn N, Armour T, Swanson ME, Dhingra A (2012) Effect of phyllotactic position and cultural treatments toward successful direct shoot organogenesis in dwarf ‘Pixie’grapevine (Vitis vinifera L.). Plant Cell, Tissue Organ Cult 111:123–129

    Article  Google Scholar 

  • Perl A, Lotan O, Abu-Abied M, Holland D (1996) Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L.): the role of antioxidants during grape-Agrobacterium interactions. Nat Biotechnol 14:624–628

    Article  CAS  PubMed  Google Scholar 

  • Péros J-P, Torregrosa L, Berger G (1998) Variability among Vitis vinifera cultivars in micropropagation, organogenesis and antibiotic sensitivity. J Exp Bot 49:171–179

    Article  Google Scholar 

  • Rajasekaran K, Mullins MG (1981) Organogenesis in internode explants of grapevines. Vitis 20:218–227

    Google Scholar 

  • Reisch BI, Martens MH, Cheng ZM (1990) High frequency regeneration from grapevine petioles: extension to new genotypes. In: Proceedings of the 5th International Symposium on Grape Breeding, Pfalz, Germany, pp 419–422

  • Scorza R, Cordts J, Ramming D, Emershad R (1995) Transformation of grape (Vitis vinifera L.) zygotic-derived somatic embryos and regeneration of transgenic plants. Plant Cell Rep 14:589–592

    Article  CAS  PubMed  Google Scholar 

  • Scorza R, Cordts J, Gray D, Gonsalves D, Emershad R, Ramming D (1996) Producing transgenic ‘Thompson Seedless’ grape (Vitis vinifera L.) plants. J Am Soc Hortic Sci 121:616–619

    Google Scholar 

  • Stamp JA, Colby SM, Meredith CP (1990a) Direct shoot organogenesis and plant regeneration from leaves of grape (Vitis spp.). Plant Cell, Tissue Organ Cult 22:127–133

    Article  Google Scholar 

  • Stamp JA, Colby SM, Meredith CP (1990b) Improved shoot organogenesis from leaves of grape. J Am Soc Hortic Sci 115:1038–1042

    Google Scholar 

  • Thomas M, Matsumoto S, Cain P, Scott N (1993) Repetitive DNA of grapevine: classes present and sequences suitable for cultivar identification. Theor Appl Genet 86:173–180

    Article  CAS  PubMed  Google Scholar 

  • Torregrosa L, Bouquet A (1996) Adventitious bud formation and shoot development from in vitro leaves of Vitis × Muscadinia hybrids. Plant Cell, Tissue Organ Cult 45:245–252

    Article  CAS  Google Scholar 

  • Torregrosa L, Iocco P, Thomas M (2002) Influence of Agrobacterium strain, culture medium, and cultivar on the transformation efficiency of Vitis vinifera L. Am J Enol Vitic 53:183–190

    CAS  Google Scholar 

  • Wang Q, Li P, Hanania U, Sahar N, Mawassi M, Gafny R, Sela I, Tanne E, Perl A (2005) Improvement of Agrobacterium-mediated transformation efficiency and transgenic plant regeneration of Vitis vinifera L. by optimizing selection regimes and utilizing cryopreserved cell suspensions. Plant Sci 168:565–571

    Article  CAS  Google Scholar 

  • Zhang P, Yu Z-Y, Cheng Z-M, Zhang Z, Tao J-M (2011) In vitro explants regeneration of the grape ‘Wink’(Vitis vinifera L. ‘Wink’). J Plant Breed Crop Sci 3:276–282

    CAS  Google Scholar 

  • Zhou Q, Dai L, Cheng S, He J, Wang D, Zhang J, Wang Y (2014) A circulatory system useful both for long-term somatic embryogenesis and genetic transformation in Vitis vinifera L. cv. Thompson Seedless. Plant Cell, Tissue Organ Cult 118:157–168

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China in conjunction with the assistantship of the Department of Viticulture and Enology at University of California, Davis.

Funding

The research was done with the grant of the National Science Foundation of China (Grant No. 31372039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuejin Wang or M. Andrew Walker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Author contributions

Conceived and designed the experiments: CBA MAW. Performed the experiments: XX CBA. Analyzed the data: XX. Contributed reagents/materials/analysis tools: YW MAW. Wrote the paper: XX CBA YW MAW. All authors read and approved the final manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5835 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Agüero, C.B., Wang, Y. et al. Genetic transformation of grape varieties and rootstocks via organogenesis. Plant Cell Tiss Organ Cult 126, 541–552 (2016). https://doi.org/10.1007/s11240-016-1023-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-016-1023-4

Keywords

Navigation