Skip to main content
Log in

Characterization of the Populus PtrCesA4 promoter in transgenic Populus alba × P. glandulosa

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

An efficient shoot regeneration method was developed using leaf explants of Populus alba × P. glandulosa, and the optimized shoot regeneration medium contained 0.1 mg L−1 NAA, 0.5 mg L−1 6-BA and 0.002 mg L−1 TDZ. The factors for Agrobacterium-mediated transformation of this hybrid were further optimized as follows: no preculture step, Agrobacterium cell suspension with an OD600 of 0.6, 20 min infection time and 2d co-cultivation duration. To investigate Populus trichocarpa cellulose synthase A4 promoter (PtrCesA4pro), we constructed the PtrCesA4pro:: β-glucuronidase (GUS) binary vector, in which the cauliflower mosaic virus 35S (CaMV35S) promoter of pBI121was replaced with the PtrCesA4pro to drive the expression of a GUS reporter gene. Forty-eight kanamycin-resistant plantlets were obtained through Agrobacterium-mediated transformation of this hybrid. Genomic DNA PCR and Southern blot analyses confirmed the integration of PtrCesA4pro::GUS into this hybrid and the expression of GUS gene was driven by the PtrCesA4 promoter. A histochemical GUS staining presented the activity of PtrCesA4 promoter in the transgenic lines. No GUS signal was observed in leaves, including the veins and petioles, and notably weak staining was detected in the secondary xylems of the roots. The PtrCesA4 promoter was highly active in the fibers, the vessels of developing xylems, and the fibers of mature phloems. Surprisingly, GUS staining was detected in the cambial cells of the highly lignified stems of these transgenic trees. Our results implicate PtrCesA4 promoter as a good genetic tool for controlling gene function in wood development and tree molecular breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aggarwal D, Kumar A, Reddy MS (2015) Genetic transformation of endo-1,4-b-glucanase (Korrigan) for cellulose enhancement in Eucalyptus tereticornis. Plant Cell Tiss Organ Cult 122:363–371

    Article  CAS  Google Scholar 

  • Amutha S, Muruganantham M, Ganapathi A (2006) Thidiazuron induce high frequency axillary and adventitious shoot regeneration in Vigna radiata L. Wilezek. In Vitro Cell Dev Biol Plants 42:26–30

    Article  CAS  Google Scholar 

  • Atanassov II, Pittman JK, Turner SR (2009) Elucidating the mechanisms of assembly and subunit interaction of the cellulose synthase complex of Arabidopsis secondary cell walls. J Biol Chem 284:3833–3841

    Article  CAS  PubMed  Google Scholar 

  • Choi Y, Noh EW, Lee HS, Han MS, Lee JS, Choi KS (2005) An efficient and novel plant selectable marker based on organomercurial resistance. J Plant Biol 48:351–355

    Article  CAS  Google Scholar 

  • De Block M (1990) Factors influencing the tissue culture and the Agrobacterium tumefaciens-mediated transformation of hybrid aspen and poplar clones. Plant Physiol 93:1110–1116

    Article  PubMed Central  PubMed  Google Scholar 

  • Desprez T, Juraniec M, Crowell EF, Jouy H, Pochylova Z, Parcy F, Hofte H, Gonneau M, Vernhettes S (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:15572–15577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Djerbi S, Lindskog M, Arvestad L, Sterky F, Teeri TT (2005) The genome sequence of black cottonwood (Populus trichocarpa) reveals 18 conserved cellulose synthase (CesA) genes. Planta 221:739–746

    Article  CAS  PubMed  Google Scholar 

  • Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43:1407–1420

    Article  CAS  PubMed  Google Scholar 

  • Eckenwalder JE (1996) Systematics and evolution of Populus. In: Stettler RF, Bradshaw HD, Heilman PE, Hinckley TM (eds) Biology of Populus and its implications for management and conservation. NRC Research Press, Ottawa, pp 7–32

    Google Scholar 

  • Feng F, Ding F, Tyree MT (2015) Investigations concerning cavitation and frost fatigue in clonal 84 K poplar using high-resolution cavitron measurements. Plant Physiol 168:144–155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hamzeh M, Dayanandan S (2004) Phylogeny of Populus (Salicaceae) based on nucleotide sequences of chloroplast TRNT-TRNF region and nuclear rDNA. Am J Bot 91:1398–1408

    Article  CAS  PubMed  Google Scholar 

  • Holsters M, de Waele D, Depicker A, Messens E, van Montagu M, Schell J (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet 163:181–187

    Article  CAS  PubMed  Google Scholar 

  • Husain MK, Anis M, Shahzad A (2007) In vitro propagation of Indian kino (Pterocarpus marsupium Roxb.) using Thidiazuron. In Vitro Cell Dev Biol Plant 43:59–64

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ke Q, Wang Z, Ji CY, Jeong JC, Lee HS, Li H, Xu B, Deng X, Kwak SS (2015) Transgenic poplar expressing Arabidopsis YUCCA6 exhibits auxin-overproduction phenotypes and increased tolerance to abiotic stress. Plant Physiol Biochem 94:19–27

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Thammannagowda S, Bulone V, Chiang V, Han KH, Joshi CP, Mansfield SD, Mellerowicz E, Sundberg B, Teeri T, Ellis BE (2009) An update on the nomenclature for the cellulose synthase genes in Populus. Trends Plant Sci 14:248–254

    Article  CAS  PubMed  Google Scholar 

  • Kwon SI, Cho HJ, Lee JS, Jin H, Shin SJ, Kwon M, Noh EW, Park OK (2011) Overexpression of constitutively active Arabidopsis RabG3b promotes xylem development in transgenic poplars. Plant Cell Environ 34:2212–2224

    Article  CAS  PubMed  Google Scholar 

  • Li H, Li M, Luo J, Cao X, Qu L, Gai Y, Jiang X, Liu T, Bai H, Janz D, Polle A, Peng C, Luo ZB (2012) N-fertilization has different effects on the growth, carbon and nitrogen physiology, and wood properties of slow- and fast-growing Populus species. J Exp Bot 63:6173–6185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mroginski E, Rey HY, Gonzalez AM, Mroginski LA (2004) Thidiazuron promotes in vitro plant regeneration of Arachis correntiana (Leguminosae) via organogenesis. J Plant Growth Regul 23:129–134

    Article  CAS  Google Scholar 

  • Murthy BNS, Murch SJ, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol Plant 34:267–275

    Article  CAS  Google Scholar 

  • Noh SA, Choi YI, Cho JS, Lee H (2015) The poplar basic helix-loop-helix transcription factor BEE3-Like gene affects biomass production by enhancing proliferation of xylem cells in poplar. Biochem Biophys Res Commun 462:64–70

    Article  CAS  PubMed  Google Scholar 

  • Porth I, El-Kassaby YA (2015) Using Populus as a lignocellulosic feedstock for bioethanol. Biotechnol J 10:510–524

    Article  CAS  PubMed  Google Scholar 

  • Richmond TA, Somerville CR (2000) The cellulose synthase superfamily. Plant Physiol 124:495–498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song DL, Shen JH, Li LG (2010) Characterization of cellulose synthase complexes in Populus xylem differentiation. New Phytol 187:777–790

    Article  CAS  PubMed  Google Scholar 

  • Stevens ME, Pijut PM (2014) Agrobacterium-mediated genetic transformation and plant regeneration of the hardwood tree species Fraxinus profunda. Plant Cell Rep 33:861–870

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Li LG, Sun YH, Chiang VL (2006) The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa. Plant Physiol 142:1233–1245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takata N, Taniguchi T (2015) Expression divergence of cellulose synthase (CesA) genes after a recent whole genome duplication event in Populus. Planta 241:29–42

    Article  CAS  PubMed  Google Scholar 

  • Taylor NG, Scheible WR, Cutler S, Somerville CR, Turner SR (1999) The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11:769–779

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor NG, Laurie S, Turner SR (2000) Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12:2529–2539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci USA 100:1450–1455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tuskan GA et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Wang SY, Chen QJ, Wang WL, Wang XC, Lu MZ (2005) Salt tolerance conferred by over-expression of OsNHX1 gene in Poplar 84K. Chin Sci Bull 50:224–228

    Article  CAS  Google Scholar 

  • Wang J, Elliott JE, Williamson RE (2008) Features of the primary wall CesA complex in wild type and cellulose-deficient mutants of Arabidopsis thaliana. J Exp Bot 59:2627–2637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang HH, Wang CT, Liu H, Tang RJ, Zhang HX (2011) An efficient Agrobacterium-mediated transformation and regeneration system for leaf explants of two elite aspen hybrid clones Populus alba × P. berolinensis and Populus davidiana × P. bolleana. Plant Cell Rep 30:2037–2044

    Article  CAS  PubMed  Google Scholar 

  • Wang YJ, Pan RH, Tyree MT (2015) Studies on the tempo of bubble formation in recently cavitated vessels: a model to predict the pressure of air bubbles. Plant Physiol 168:521–531

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by Grants from the National High Technology Research and Development Program of China (2013AA102702), the Program for New Century Excellent Talents in University (NCET-12-0807), the National Key Basic Research Program of China (2012CB114502), and Project of the Natural Sciences Foundation of Heilongjiang Province (Grant C201010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxiang Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hai, G., Jia, Z., Xu, W. et al. Characterization of the Populus PtrCesA4 promoter in transgenic Populus alba × P. glandulosa . Plant Cell Tiss Organ Cult 124, 495–505 (2016). https://doi.org/10.1007/s11240-015-0909-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0909-x

Keywords

Navigation