Skip to main content
Log in

Micropropagation of wild species of the genus Asparagus L. and their interspecific hybrids with cultivated A. officinalis L., and verification of genetic stability using EST-SSRs

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

An efficient micropropagation method for asparagus species was developed in this study. The method allows the fast cloning of the elite genotypes from different asparagus species and the interspecific hybrids obtained from these species. Rhizome bud explants were disinfected using 3 g l−1 of benomyl and 20 g l−1 of sodium hypochlorite. Then, they were cultured on Asparagus Rhizome Bud Medium 3 (ARBM-3) consisting in modified Murashige and Skoog medium with salts with EDDHA-Fe (85.7 mg l−1) instead of EDTA-Fe and vitamins, supplemented with 0.3 mg l−1 NAA, 0.1 mg l−1 KIN, 2 mg l−1 ancymidol and 6 % sucrose. Results showed that the method developed produced high disinfection rates (70–95 %). More than 70 % of the explants developed shoots and the rooting rate on ARBM-3 medium was 30–45 %. The rooting rate increased to 60–85 % when the unrooted shoots were subjected to an additional cycle of rooting, reaching 100 % after two cycles of rooting. The multiplication was achieved through mechanical division of rooted shoot clusters growing in ARBM-3. The acclimatization rate of the micropropagated plantlets was higher than 90 %. The micropopagated plantlets were screened for somaclonal variation using 12 expressed sequence tag derived simple sequence repeat markers. The results confirmed the character “true to type” of the plantlets, indicating that the method developed in this study can be used to successfully micropropagate asparagus species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adhikari S, Bandyopadhyay TP, Ghosh P (2014) Assessment of genetic stability of Cucumis sativus L. regenerated from encapsulated shoot tips. Sci Hortic 170:115–122

    Article  CAS  Google Scholar 

  • Bairu MW, Aremu AO, Van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173

    Article  CAS  Google Scholar 

  • Benmoussa M, Mukhopadhyay S, Desjardins Y (1996) Optimization of callus culture and shoot multiplication of Asparagus densiflorus. Plant Cell Tissue Organ Cult 47:91–94

    Article  Google Scholar 

  • Bopana N, Saxena S (2008) In vitro propagation of a high value medicinal plant: Asparagus racemosus Willd. In Vitro Cell Dev Biol 44:525–532

    Article  Google Scholar 

  • Carmona-Martin E, Regalado JJ, Padilla IMG, Westendrop N, Encina CL (2014) A new and efficient micropropagation method and its breeding applications in Asparagus genera. Plant Cell Tiss Organ Cult 119:479–488

    Article  CAS  Google Scholar 

  • Caruso M, Federici CT, Roose ML (2008) EST-SSR markers for asparagus genetic diversity evaluation and cultivar identification. Mol Breeding 21:195–204

    Article  CAS  Google Scholar 

  • Castro P, Gil J, Cabrera A, Moreno R (2013) Assesment of genetic diversity and phylogenetic relationship in Asparagus species related to Asparagus officinalis. Genet Resour Crop Evol 60:1275–1288

    Article  Google Scholar 

  • Chavan JJ, Gaikwad NB, Yadav SR (2013) High multiplication frequency and genetic stability analysis of Ceropegia panchganiensis, a threatened ornamental plant of Western Ghats: conservation implications. Sci Hortic 161:134–142

    Article  CAS  Google Scholar 

  • Clifford HT, Conran JG (1987) 2.Asparagus, 3.Protasparagus, 4. Myrsiphyllum. In: George AS (ed) Flora of Australia. Australian Government Publishing Service, Canberra, pp 159–164

    Google Scholar 

  • Desjardins Y (1992) Micropropagation of Asparagus (Asparagus officinalis L.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, Vol 19: High-tech and micropropagation III. Springer, Berlin-Heidelberg, pp 26–41

    Google Scholar 

  • Desjardins Y, Tiessen H, Harney PM (1987) The effect of sucrose and ancymidol on the in vitro rooting of nodal sections of asparagus. HortScience 22:131–133

    CAS  Google Scholar 

  • Encina CL, Caro E, Padilla IMG, Westendorp N, Carmona-Martín E, Barceló-Muñoz A, Vidoy Mercado I (2008) Procedimiento para la propagación in vitro del espárrago. Patent No.: P200803544 (ESP). Spain. Owner CSIC

  • Falavigna A, Alberti P, Casali PE, Toppino L, Huaisong W, Mennella G (2008) Interspecific hybridization for asparagus breeding in Italy. Acta Hortic 776:291–298

    CAS  Google Scholar 

  • Gao DY, Vallejo V, He B, Gai YC, Sun LH (2009) Detection of DNA changes in somaclonal mutants of rice using SSR markers and transposon display. Plant Cell Tissue Organ Cult 98:187–196

    Article  CAS  Google Scholar 

  • Ghosh B, Sen S (1994a) Effect of explant, light intensity and growth regulators on stable regeneration of Asparagus plumosus Baker. Nucleus Calcutta 37:24–29

    CAS  Google Scholar 

  • Ghosh B, Sen S (1994b) Micropropagation of Asparagus cooperi as affected by growth regulators. Biol Plant 36:527–534

    Article  CAS  Google Scholar 

  • Ghosh B, Sen S (1996) Plant regeneration in Asparagus verticillatus L. J Herbs Species Med Plants 4:9–17

    Article  Google Scholar 

  • Ito T, Ochiai T, Fukuda T et al (2008) Potential of interspecific hybrids in Asparagaceae. Acta Hortic 776:279–284

    CAS  Google Scholar 

  • Knaflewski M (1996) Genealogy of asparagus cultivars. Acta Hortic 415:87–91

    Google Scholar 

  • Kubota S, Konno I, Kanno A (2012) Molecular phylogeny of the genus Asparagus (Asparagaceae) explains interspecific crossability between the garden asparagus (A. officinalis) and other Asparagus species. Theor Appl Genet 124:345–354

    Article  PubMed  Google Scholar 

  • Kunitake H, Mii M (1998) Somatic embryogenesis and its application for breeding and micropropagation in asparagus (Asparagus officinalis L.). Plant Biotechnol 15:51–61

    Article  CAS  Google Scholar 

  • Kunitake H, Nakashima T, Mori K, Tanaka M, Saito A, Mii M (1996) Production of interspecific somatic hybrid plants between Asparagus officinalis and A. macowanii throuth electrofusion. Plant Sci 116:213–222

    Article  CAS  Google Scholar 

  • Moreno R, Espejo JA, Cabrera A, Millan T, Gil J (2006) Ploidic and molecular analysis of ‘Morado de Huetor’ asparagus (Asparagus officinalis L.) population; a Spanish tetraploid landrace. Genet Resour Crop Evol 53:729–736

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murashige T, Shabde MN, Hasegawa PM, Takatori FH, Jones JB (1972) Propagation of asparagus through shoot apex culture. I. Nutrient medium for formation of plantlets. J Am Soc Hortic Sci 97:158–161

    Google Scholar 

  • Nayak S, Sen S (1998) Regeneration of Asparagus robustus Hort. J Herbs Species Med Plants 5:43–50

    Article  Google Scholar 

  • Pontaroli AC, Camadro EL (2005) Somaclonal variation in Asparagus officinalis plants regenerated by organogenesis from long-term callus cultures. Genet Mol Biol 28:423–430

    Article  Google Scholar 

  • Raimondi JP, Camadro EL, Masuelli RW (2001) Assessment of somaclonal variation in asparagus by RAPD fingerprinting and cytogenetic analyses. Sci Hortic 90:19–29

    Article  Google Scholar 

  • Ray T, Dutta I, Saha P, Das S, Roy SC (2006) Genetic stability of three economically important micropropagated banana (Musa spp.) cultivars of lower Indo-Gangetic plains, as assessed by RAPD and ISSR markers. Plant Cell Tissue Organ Cult 85:11–21

    Article  CAS  Google Scholar 

  • Riccardi P, Casali PE, Mercati F, Falavigna A, Sunseri F (2011) Genetic characterization of asparagus doubled haploids collection and wild relatives. Sci Hortic 130:691–700

    Article  CAS  Google Scholar 

  • Singh R, Srivastava S, Singh S, Sharma M, Mohopatra T, Singh N (2008) Identification of new microsatellite DNA markers for sugar and related traits in sugarcane. Sugar Tech 10:327–333

    Article  CAS  Google Scholar 

  • Štajner N, Bohanec B, Jakše M (2002) In vitro propagation of Asparagus maritimus—a rare Mediterranean salt-resistant species. Plant Cell Tissue Organ Cult 70:269–274

    Article  Google Scholar 

  • Torres AM, Weeden NF, Martín A (1993) Linkage among isozyme, RFLP and RAPD markers in Vicia faba. Theor Appl Genet 85:937–945

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Wang H, Dong Z, Qi B, Xu K, Liu B (2010) Tissue culture induced variation at simple sequence repeats in sorghum (Sorghum bicolor L.) is genotype-dependent and associated with down-regulated expression of a mismatch repair gene, MLH3. Plant Cell Rep 29:51–59

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This project is funded by “Junta de Andalucía” (Project of Excellence AGR3648).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Regalado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regalado, J.J., Carmona-Martín, E., Castro, P. et al. Micropropagation of wild species of the genus Asparagus L. and their interspecific hybrids with cultivated A. officinalis L., and verification of genetic stability using EST-SSRs. Plant Cell Tiss Organ Cult 121, 501–510 (2015). https://doi.org/10.1007/s11240-015-0720-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0720-8

Keywords

Navigation