Skip to main content
Log in

Development of a genetic transformation system for distylous Turnera joelii (Passifloraceae) and characterization of a self-compatible mutant

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Plants in the genus Turnera provide a useful system for investigating the molecular genetics of distyly and candidate genes involved in this plant breeding system have been proposed. We develop the first transformation system for the genus, using leaf explant tissue of Turnera joelii transformed using Agrobacterium tumefaciens harbouring the pGreen plasmid. Transgenic plants were successfully regenerated using a two growth-medium method and hygromycin resistance as the selectable marker. This should provide a system for testing the function of candidate genes for distyly. We obtained 19 transgenic plants and explore some of their characteristics. We find at least two instances where chromosomal abnormalities have occurred during the transformation process and observe reduced pollen fertility for seven of the transformants, likely evidence for somaclonal variation. We show that the transgenes inserted into two transgenic plants exhibit expected single gene segregation ratios, but find aberrant ratios for a third transgenic plant. The latter plant exhibits a mutant self-compatible phenotype, where self-compatibility is due to a defect in the incompatibility of its pollen. In crosses, the self-compatible transgenic plant shows marked departures from expected single locus ratios at the S-locus determining distyly, with an almost complete lack of transmission of the dominant S-allele. The plant appears to contain more than one copy of the inserted transgene based upon segregation ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alcaraz-Meléndez L, Real-Cosío S, Bashar Y (1994) Domestication of micropropagated plants of the spice damiana (Turnera diffusa). Plant Cell Rep 13:679–682

    Article  PubMed  Google Scholar 

  • Alcaraz-Meléndez L, Real-Cosío S, Robert ML (2002) Morphological comparison of damiana (Turnera diffusa, Willd.) regenerated in vitro from leaves cultured in solidified medium and liquid cultures. Sci Hortic 96:293–301

    Article  Google Scholar 

  • Athanasiou A, Khosravi D, Tamari F, Shore JS (2003) Characterization and localization of short-specific polygalacturonase in distylous Turnera subulata (Turneraceae). Am J Bot 90:675–682

    Article  CAS  PubMed  Google Scholar 

  • Barrett SCH, Shore JS (2008) New insights on heterostyly: Comparative biology, ecology and genetics. In: Franklin-Tong VE (ed) Self-incompatibility in flowering plants: evolution, diversity and mechanisms. Springer-verlag, Berlin, pp 3–32

    Chapter  Google Scholar 

  • Bateson W, Gregory RP (1905) On the inheritance of heterostylism in Primula. Proc R Soc Lond B 76:581–586

    Article  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Darwin C (1877) The different forms of flowers on plants of the same species. John Murray, London

    Book  Google Scholar 

  • De Buck S, Jacobs A, Van Montagu M, Depicker A (1999) The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration. Plant J 20:295–304

    Article  PubMed  Google Scholar 

  • Deroles SC, Gardner RC (1988) Analysis of the T-DNA structure in a large number of transgenic petunias generated by Arobacterium-mediated transformation. Plant Mol Biol 11:365–377

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Rondero AJ, Alcaraz-Meléndez L (1987) Callus induction and plantlet regeneration in damiana (Turnera diffusa, Willd.). Plant Cell, Tissue Org Cult 10:39–45

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Dutta I, Kottackal M, Tumimbang E, Tajima H, Zaid A, Blumwald E (2013) Sonication-assisted efficient Agrobacterium-mediated genetic transformation of the multipurpose woody desert shrub Leptadenia pyrotechnica. Plant Cell Tissue Org Cult 112:289–301

    Article  CAS  Google Scholar 

  • Filipecki M, Malepszy M (2006) Unintended consequences of plant transformation. J Appl Genet 47:277–286

    Article  PubMed  Google Scholar 

  • Gilmartin PM, Li J (2010) Delineation of the S-locus in Turnera subulata—homing in on heterostyly. Heredity 105:161–162

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D (1985) DNA cloning, a practical approach. In: Glover DM (ed) DNA cloning, a practical approach, vol 1. IRL Press, Oxford, pp 109–135

    Google Scholar 

  • Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832

    Article  CAS  PubMed  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  CAS  PubMed  Google Scholar 

  • Khosravi D, Yang E, Siu K, Shore JS (2004) High level of α-dioxygenase in short styles of distylous Turnera species. Int J Plant Sci 165:995–1006

    Article  CAS  Google Scholar 

  • Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV (2004) Genetic transformation of the green alga-Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166:731–738

    Article  CAS  Google Scholar 

  • Labonne JDJ, Shore JS (2011) Positional cloning of the s haplotype determining the floral and incompatibility phenotype of the long-styled morph of distylous Turnera subulata. Mol Genet Genomics 285:101–111

    Article  CAS  PubMed  Google Scholar 

  • Labonne JDJ, Goultiaeva A, Shore JS (2009) High-resolution mapping of the S-locus in Turnera leads to the discovery of three genes tightly associated with the S-alleles. Mol Genet Genomics 281:673–685

    Article  CAS  PubMed  Google Scholar 

  • Labonne JDJ, Tamari F, Shore JS (2010) Characterization of X-ray-generated floral mutants carrying deletions at the S-locus of distylous Turnera subulata. Heredity 105:235–243

    Article  CAS  PubMed  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  CAS  PubMed  Google Scholar 

  • Lavia G, Fernandez A, Marquez G (1994) Chromosome doubling in Turnera ulmifolia (Turneraceae) induced by regeneration of plants from in vitro cultured leaf explants. Plant Syst Evol 192:41–48

    Article  Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9:963–967

    Article  CAS  PubMed  Google Scholar 

  • Lewis D, Jones DA (1992) The genetics of heterostyly. In: Barrett SCH (ed) Evolution and Function of Heterostyly. Springer-verlag, New York, pp 129–150

    Chapter  Google Scholar 

  • Li J, Webster MA, Smith MC, Gilmartin PM (2011) Floral hetermorphy in Primula vulgaris: progress towards isolation and characterization of the S locus. Ann Bot 108:715–726

    Article  PubMed Central  PubMed  Google Scholar 

  • Manders G, Otoni WC, d’Utra Vaz FB, Blackhall NW, Power JB, Davey MR (1994) Transformation of passionfruit (Passiflora edulis fv flavicarpa Degener.) using Agrobacterium tumefaciens. Plant Cell Rep 13:697–702

    Article  CAS  PubMed  Google Scholar 

  • McCubbin AG, Lee C, Hetrick A (2006) Identification of genes showing differential expression between morphs in developing flowers of Primula vulgaris. Sex Plant Reprod 19:63–72

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nagano M, Aii J, Campbell C, Adachi T, Kawasaki S (2005) Construction of a BAC library for the investigation of the S locus in Buckwheat. Fagopyrum 22:13–20

    CAS  Google Scholar 

  • Phillips RL, Kaeppler SM, Olhoft P (1994) Genetic instability of plant tissue cultures: breakdown of normal controls. Proc Natl Acad Sci USA 91:5222–5226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • SAS Institute Inc. (2013) SAS 9.4 help and documentation. SAS Institute Inc., Cary

  • Shen W-J, Forde BG (1989) Efficient transformation of Agrobacterium spp. by high voltage electroporation. Nucleic Acid Res 17:8385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shore JS (1991) Chromosomal evidence for autotetraploidy in the Turnera ulmifolia complex (Turneraceae). Can J Bot 69:1302–1308

    Article  Google Scholar 

  • Shore JS, Barrett SCH (1985) The genetics of distyly and homostyly in Turnera ulmifolia L. (Turneraceae). Heredity 55:167–174

    Article  Google Scholar 

  • Snow R (1963) Alcoholic hydrochloric acid-carmine as a stain for chromosomes in squash preparations. Stain Technol 38:9–13

    CAS  PubMed  Google Scholar 

  • Stöger E, Fink C, Pfosser M, Heberle-Bors E (1995) Plant transformation by particle bombardment of embryonic pollen. Plant Cell Rep 14:273–278

    Article  PubMed  Google Scholar 

  • Tamari F, Athanasiou A, Shore JS (2001) Pollen tube growth and inhibition in distylous and homostylous Turnera and Piriqueta (Turneraceae). Can J Bot 79:578–591

    Google Scholar 

  • Ushijima K, Nakano R, Bando M, Shigenzane Y, Ikeda K, Namba Y, Kume S, Kitabata T, Mori H, Kubo Y (2012) Isolation of the floral morph-related genes in heterostylous flax (Linum grandiflorum): the genetic polymorphism and the transcriptional and post-transcriptional regulations of the S locus. Plant J 69:317–331

    Article  CAS  PubMed  Google Scholar 

  • Wang YH (2008) How effective is T-DNA insertional mutagenesis in Arabidopsis? J Biochem Tech 1:11–20

    CAS  Google Scholar 

  • Winkler LM, Quoirin M (2002) Organogenesis and genetic transformation of yellow passion fruit (Passiflora edulis f. flavicarpa Deg.) with the gene CMe-ACO1 and nptII via Agrobacterium tumefaciens. Acta Hortic 632:31–40

    Google Scholar 

  • Yasui Y, Mori M, Aii J, Abe T, Matsumoto D, Sato S, Hayashi Y, Ohnishi O, Ota T (2012) S-locus early flowering 3 is present in the genomes of short-styled buckwheat plants that exhibit heteromorphic self-incompatibility. PLoS ONE 7(2):e31264-1–e31264-9

    Article  Google Scholar 

Download references

Acknowledgments

We thank Kathi Hudak, Schuyler Korban, and Roger Lew for advice and use of equipment, and Shifteh Dehghani and John MacIsaac for technical assistance. This work was funded by a Natural Sciences and Engineering Research Council of Canada Discovery Grant to J.S. Shore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel S. Shore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chafe, P.D.J., Lee, T. & Shore, J.S. Development of a genetic transformation system for distylous Turnera joelii (Passifloraceae) and characterization of a self-compatible mutant. Plant Cell Tiss Organ Cult 120, 507–517 (2015). https://doi.org/10.1007/s11240-014-0617-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0617-y

Keywords

Navigation