Skip to main content
Log in

COLMA: a chaos-based mayfly algorithm with opposition-based learning and Levy flight for numerical optimization and engineering design

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The Mayfly Algorithm (MA) is a widely used metaheuristic algorithm characterized by a simple structure with simple parameters. However, MA may have problems such as poor global search ability and tend to fall into local optima. To overcome these limitations, this paper presents a chaos-based mayfly algorithm with opposition-based learning and Levy flight (COLMA) to boost the global search and local exploitation performance. In COLMA, we first introduced tent chaos to optimize the initialization process of the mayfly population, as random initialization processes may result in low diversity of the mayfly population. In addition, the gravity coefficient has been replaced with an adaptive gravity coefficient to balance the global search ability and local exploitation ability during the iterative process of the algorithm. In the process of updating the position of the male mayfly population, an opposition-based learning strategy based on an iterative chaotic map with infinite collapses is adopted to prevent the male mayfly population from falling into local optima. At the same time, in order to solve the problem of small search range of female mayfly population, Levy flight strategy was introduced to replace random walk strategy. Finally, an offspring optimization strategy was proposed to increase the probability of the offspring mayfly population approaching the optimal solution. To verify the effectiveness and superiority of COLMA and the adopted strategy, experiments were conducted on the classical benchmark functions, CEC 2017 benchmark suite and CEC 2020 real-world constraint optimization problems, and the results were statistically tested using the Wilcoxon signed rank test and Friedman test. The analysis results show that the proposed COLMA has statistical validity and reliability and has great advantages compared with MA, variant MA in terms of optimization accuracy, stability and convergence speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Xu W, Zhang R, Chen L (2022) An improved crow search algorithm based on oppositional forgetting learning. Appl Intell 52:7905–7921. https://doi.org/10.1007/s10489-021-02701-y

    Article  Google Scholar 

  2. Guohua Wu, Witold Pedrycz PN, Suganthan RM (2015) A variable reduction strategy for evolutionary algorithms handling equality constraints. Appl Soft Comput 37:774–786. https://doi.org/10.1016/j.asoc.2015.09.007

    Article  Google Scholar 

  3. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  4. Wen H, Wang SX, Lu FQ et al (2022) Colony search optimization algorithm using global optimization. Supercomput 78:6567–6611. https://doi.org/10.1007/s11227-021-04127-2

    Article  Google Scholar 

  5. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN'95 International Conference on Neural Networks, vol 4, pp 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

  6. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1:28–39. https://doi.org/10.1109/MCI.2006.329691

    Article  Google Scholar 

  7. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  8. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  9. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  10. Holland JH (1975) Adaptation in natural and artificial systems. Rev Holl 183:15. https://doi.org/10.1145/1216504.1216510

    Article  Google Scholar 

  11. Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  12. Omidvar MN, Li X, Mei Y, Yao X (2014) Cooperative co-evolution with differential grouping for large scale optimization. IEEE Trans Evol Comput 18:378–393. https://doi.org/10.1109/TEVC.2013.2281543

    Article  Google Scholar 

  13. Mühlenbein H, Mahnig T (1999) FDA -a scalable evolutionary algorithm for the optimization of additively decomposed functions. Evol Comput 7:353–376

    Article  Google Scholar 

  14. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  15. Abdechiri M, Meybodi MR, Bahrami H (2013) Gases Brownian motion optimization: an algorithm for optimization (GBMO). Appl Soft Comput 13:2932–2946. https://doi.org/10.1016/j.asoc.2012.03.068

    Article  Google Scholar 

  16. Shareef H, Ibrahim AA, Mutlag AH (2015) Lightning search algorithm. Appl Soft Comput 36:315–333. https://doi.org/10.1016/j.asoc.2015.07.028

    Article  Google Scholar 

  17. Hashim FA, Houssein EH, Mabrouk MS, Al-Atabany W, Mirjalili S (2019) Henry gas solubility optimization: a novel physics-based algorithm. Futur Gener Comput Syst 101:646–667. https://doi.org/10.1016/j.future.2019.07.015

    Article  Google Scholar 

  18. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13:2592–2612. https://doi.org/10.1016/j.asoc.2012.11.026

    Article  Google Scholar 

  19. Kashan AH (2014) League championship algorithm (LCA): an algorithm for global optimization inspired by sport championships. Appl Soft Comput 16:171–200. https://doi.org/10.1016/j.asoc.2013.12.005

    Article  Google Scholar 

  20. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43:303–315. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  21. Noroozi M, Mohammadi H, Efatinasab E, Lashgari A, Eslami M, Khan B (2022) Golden search optimization algorithm. IEEE Access 10:37515–37532. https://doi.org/10.1109/ACCESS.2022.3162853

    Article  Google Scholar 

  22. Dong Y, Zhang H, Wang C, Zhou X (2022) An adaptive state transition algorithm with local enhancement for global optimization. Appl Soft Comput 121:108733. https://doi.org/10.1016/j.asoc.2022.108733

    Article  Google Scholar 

  23. Li XD, Wang JS, Hao WK et al (2022) Chaotic arithmetic optimization algorithm. Appl Intell. https://doi.org/10.1007/s10489-021-03037-3

    Article  Google Scholar 

  24. Yue S, Zhang H (2021) A hybrid grasshopper optimization algorithm with bat algorithm for global optimization. Multimed Tools Appl 80:3863–3884. https://doi.org/10.1007/s11042-020-09876-5

    Article  Google Scholar 

  25. Zhang X, Feng T (2018) Chaotic bean optimization algorithm. Soft Comput 22:67–77. https://doi.org/10.1007/s00500-016-2322-8

    Article  Google Scholar 

  26. Gao W-X, Liu S, Xiao Z-y, Jian-fang Yu (2020) Butterfly optimization algorithm based on convergence factor and gold sinusoidal guidance mechanism. Comput Eng Des 41:3384–3389. https://doi.org/10.16208/j.issn1000-7024.2020.12.013

    Article  Google Scholar 

  27. Dong H, Xu Y, Li X, Yang Z, Zou C (2021) An improved antlion optimizer with dynamic random walk and dynamic opposite learning. Knowledge-Based Syst 216:106752. https://doi.org/10.1016/j.knosys.2021.106752

    Article  Google Scholar 

  28. Zervoudakis K, Tsafarakis S (2020) A mayfly optimization algorithm. Comput Ind Eng 145:106559. https://doi.org/10.1016/j.cie.2020.106559

    Article  Google Scholar 

  29. Liu Z, Jiang P, Wang J, Zhang L (2021) Ensemble forecasting system for short-term wind speed forecasting based on optimal submodel selection and multiobjective version of mayfly optimization algorithm. Expert Syst Appl 177:114974. https://doi.org/10.1016/j.eswa.2021.114974

    Article  Google Scholar 

  30. Mo S, Ye Q, Jiang K, Mo X, Shen G (2022) An improved MPPT method for photovoltaic systems based on mayfly optimization algorithm. Energy Rep 8:141–150. https://doi.org/10.1016/j.egyr.2022.02.160

    Article  Google Scholar 

  31. Liu Y, Chai Y, Liu B, Wang Y (2021) Bearing fault diagnosis based on energy spectrum statistics and modified mayfly optimization algorithm. Sensors 21:2245. https://doi.org/10.3390/s21062245

    Article  Google Scholar 

  32. Moosavi SKR, Zafar MH, Akhter MN, Hadi SF, Khan NM, Sanfilippo F (2021) A novel artificial neural network (ANN) using the mayfly algorithm for classification. In: 2021 International Conference on Digital Futures and Transformative Technologies (ICoDT2), pp 1–6, https://doi.org/10.1109/ICoDT252288.2021.9441473.

  33. Shaheen MAM, Hasanien HM, El Moursi MS, El-Fergany AA (2021) Precise modeling of PEM fuel cell using improved chaotic MayFly optimization algorithm. Int J Energy Res 45:18754–18769. https://doi.org/10.1002/er.6987

    Article  Google Scholar 

  34. Adnan RM, Kisi O, Mostafa RR, Ahmed AN, El-Shafie A (2022) The potential of a novel support vector machine trained with modified mayfly optimization algorithm for streamflow prediction. Hydrol Sci J 67:161–174. https://doi.org/10.1080/02626667.2021.2012182

    Article  Google Scholar 

  35. Zhang T, Zhou Y, Zhou G, Deng W, Luo Q (2022) Bioinspired bare bones mayfly algorithm for large-scale spherical minimum spanning tree. Front. Bioeng. Biotechnol 10:830037. https://doi.org/10.3389/fbioe.2022.830037

    Article  Google Scholar 

  36. Wang X, Pan J-S, Yang Q, Kong L, Snášel V, Chu S-C (2022) Modified mayfly algorithm for UAV path planning. Drones. https://doi.org/10.3390/drones6050134

    Article  Google Scholar 

  37. Irudayaraj AXR, Wahab NIA, Premkumar M, Radzi MAM, Sulaiman NB, Veerasamy V, Farade RA, Islam MZ (2022) Renewable sources-based automatic load frequency control of interconnected systems using chaotic atom search optimization. Appl Soft Comput 119:108574. https://doi.org/10.1016/j.asoc.2022.108574

    Article  Google Scholar 

  38. Huang Y, Zhang J, Wei W, Qin T, Fan Y, Luo X, Yang J (2022) Research on coverage optimization in a WSN based on an improved COOT bird algorithm. Sensors 22:3383. https://doi.org/10.3390/s22093383

    Article  Google Scholar 

  39. Wang S, Liu G (2021) A nonlinear dynamic adaptive inertial weight particle swarm optimization. Comput Simul 38:249–253. https://doi.org/10.3969/j.issn.1006-9348.2021.04.050

    Article  Google Scholar 

  40. Chen G-C, Jin-shou Yu (2005) Enhanced particle swarm optimization and its application in soft-sensor. Control Decis 4:377–381. https://doi.org/10.13195/j.cd.2005.04.17.chengch.004

    Article  Google Scholar 

  41. Lei G, Chang X, Tianhang Y, Tuerxun W (2022) An improved mayfly optimization algorithm based on median position and its application in the optimization of PID parameters of hydro-turbine governor. IEEE Access 10:36335–36349. https://doi.org/10.1109/ACCESS.2022.3160714

    Article  Google Scholar 

  42. Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: International Conference on Computational Intelligence for Modeling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06), pp 695–701. https://doi.org/10.1109/CIMCA.2005.1631345.

  43. Rahnamayan S, Tizhoosh HR, Salama MMA (2008) Opposition versus randomness in soft computing techniques. Appl Soft Comput 8:906–918. https://doi.org/10.1016/j.asoc.2007.07.010

    Article  Google Scholar 

  44. Wang Z, Ding H, Yang Z et al (2022) Rank-driven salp swarm algorithm with orthogonal opposition-based learning for global optimization. Appl Intell 52:7922–7964. https://doi.org/10.1007/s10489-021-02776-7

    Article  Google Scholar 

  45. Long W, Jiao J, Liang X, Cai S, Xu M (2019) A random opposition-based learning gray wolf optimizer. IEEE Access 7:113810–113825. https://doi.org/10.1109/ACCESS.2019.2934994

    Article  Google Scholar 

  46. Wang H, Wu Z, Rahnamayan S (2011) Enhanced opposition-based differential evolution for solving high-dimensional continuous optimization problems. Soft Comput 15:2127–2140. https://doi.org/10.1007/s00500-010-0642-7

    Article  Google Scholar 

  47. Wang Z, Ding H, Wang J, Li B, Hou P, Yang Z (2022) Salp swarm algorithm based on orthogonal refracted opposition-based learning. J Harbin Inst Technol, 1–15. http://kns.cnki.net/kcms/detail/23.1235.T.20220505.1459.032.html

  48. Pavlyukevich I (2007) Lévy flights, nonlocal search and simulated annealing. J Comput Phys 226:1830–1844. https://doi.org/10.1016/j.jcp.2007.06.008

    Article  MathSciNet  MATH  Google Scholar 

  49. Reynolds AM, Frye MA (2007) Free-flight odor tracking in drosophila is consistent with an optimal intermittent scale-free search. PLoS ONE 2:e354. https://doi.org/10.1371/journal.pone.0000354

    Article  Google Scholar 

  50. Li Y, Li W-G, Zhao Y-T, Liu Ao (2020) Grey wolf algorithm based on levy flight and random walk strategy. Comput Sci 47:291–296. https://doi.org/10.11896/jsjkx.190600107

    Article  Google Scholar 

  51. Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: 2009 World Congress on Nature and Biologically Inspired Computing (NaBIC), pp 210–214. https://doi.org/10.1109/NABIC.2009.5393690

  52. Wang Y, Zhang D, Zou C (2022) Enhance global search and adaptive mayfly algorithm. J Harbin Inst Technol. https://doi.org/10.11918/202111069

    Article  Google Scholar 

  53. Huan-zeng Xu, Wen-qian Xu, Kong Z-M (2022) Mayfly algorithm based on tent chaotic sequence and its application. Control Eng China 29:435–440. https://doi.org/10.14107/j.cnki.kzgc.20210263

    Article  Google Scholar 

  54. Yu C, Chen M, Cheng K et al (2021) SGOA: annealing-behaved grasshopper optimizer for global tasks. Eng Comput. https://doi.org/10.1007/s00366-020-01234-1

    Article  Google Scholar 

  55. Zhang H, Cai Z, Ye X et al (2022) A multistrategy enhanced salp swarm algorithm for global optimization. Eng Comput 38:1177–1203. https://doi.org/10.1007/s00366-020-01099-4

    Article  Google Scholar 

  56. Yueting Xu, Chen H, Luo J, Zhang Q, Jiao S, Zhang X (2019) Enhanced Moth-flame optimizer with mutation strategy for global optimization. Inf Sci 492:181–203. https://doi.org/10.1016/j.ins.2019.04.022

    Article  MathSciNet  Google Scholar 

  57. Abualigah L, Yousri D, Elaziz MA, Ewees AA, Al-qaness MAA, Gandomi AH (2021) Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng 157:107250. https://doi.org/10.1016/j.cie.2021.107250

    Article  Google Scholar 

  58. Kumar A, Das S, Kong L, Snášel V (2021) Self-adaptive spherical search with a low-precision projection matrix for real-world optimization. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2021.3119386

    Article  Google Scholar 

  59. Kumar A, Das S, Zelinka I (2020) A modified covariance matrix adaptation evolution strategy for real-world constrained optimization problems. In: GECCO '20: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion https://doi.org/10.1145/3377929.3398185

  60. Gurrola-Ramos J, Hernàndez-Aguirre A, Dalmau-Cedeño O (2020) COLSHADE for real-world single-objective constrained optimization problems. IEEE Cong Evol Comput CEC. https://doi.org/10.1109/CEC48606.2020.9185583

    Article  Google Scholar 

  61. Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1:80–83. https://doi.org/10.2307/3001968

    Article  Google Scholar 

  62. Derrac J et al (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1:3–18. https://doi.org/10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

  63. P-N-Suganthan (2021) 2020-RW-Constrained-Optimisation GitHub. https://github.com/P-N-Suganthan/2020-RW-Constrained-Optimisation (Retrieved July 18, 2021)

Download references

Funding

No funding was received to assist with the preparation of this manuscript. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, YZ and CH; methodology, YZ; software, MZ; validation, YZ, MZ and CL; formal analysis, CL; investigation, CL; data curation, YZ and MZ; writing—original draft preparation, YZ; writing—review and editing, YZ and CH; visualization, YZ, MZ and CL; supervision, CH; project administration, CH; funding acquisition, CH All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Changsheng Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Huang, C., Zhang, M. et al. COLMA: a chaos-based mayfly algorithm with opposition-based learning and Levy flight for numerical optimization and engineering design. J Supercomput 79, 19699–19745 (2023). https://doi.org/10.1007/s11227-023-05400-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-023-05400-2

Keywords

Navigation