Skip to main content
Log in

Harnessing of non-covalent interaction in novel [Ni(en)3](2-chlorophenylacetate)2 second sphere complex: Synthesis, characterization, single crystal structural, DFT, and Hirshfeld surface analysis

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Novel nickel(II) ethylenediamine compound, [Ni(en)3](2-chlorophenylacetate)2, has been synthesized and characterized by spectroscopic techniques (UV-vis, FT-IR), thermogravimetric analysis, magnetic moment, molar conductivity measurement, and single-crystal X-ray diffraction analysis. The complex crystallizes in a triclinic crystal system with P \(\overline{1}\) space group with cell dimensions of a = 8.9050(2), b = 12.5620(4), c = 14.0590(4) Å, α = 102.259(2)°, β = 107.172(2)°, and γ = 106.914(2)°. The complex consists of [Ni(en)3]2+ as the cationic part and two discrete 2-chlorophenylacetate ions as anionic counterparts divulging the existence of a second sphere complex with distorted octahedral geometry. Besides electrostatic forces of attraction, non-covalent interactions (hydrogen bonding and C-H…π) sew the second sphere in extended three-dimensional supramolecular architecture and provide robustness to the crystal lattice. Field electron scanning microscope (FESEM) and energy dispersive X-ray spectra (EDX) were employed to study the surface morphology of the structure. To explore the structural insights and bonding in the complex theoretical studies, i.e., density functional theory (DFT) and Hirshfeld surface analysis have also been employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

From Supplementary material.

References

  1. Ward MD (2005) Design of crystalline molecular networks with charge-assisted hydrogen bonds. Chem Commun 5838–5842

  2. Hazra S, Sarkar B, Naiya S, Drew MGB, Ghosh A (2013) Structural variations in the complexes of cadmium(II), hexamethylenetetramine, and 2-, 3- and 4-nitrobenzoates. Inorg Chim Acta 402:12–19

    Article  CAS  Google Scholar 

  3. Dalrymple A, Parvez M, Shimizu GKH (2002) Intra- and intermolecular second-sphere coordination chemistry: formation of capsules, half-capsules, and extended structures with hexaaquo- and hexaammine metal ions. Inorg Chem 41:6986–6996

    Article  CAS  PubMed  Google Scholar 

  4. Lehn JM (1995) Supramolecular chemistry concepts and perspectives. VCH, Weinheim, Germany

    Book  Google Scholar 

  5. Lee EY, Suh MP (2004) A robust porous material constructed of linear coordination polymer chains: reversible single-crystal to single-crystal transformations upon dehydration and rehydration. Angew Chem Int Ed 43:2798–2801

    Article  CAS  Google Scholar 

  6. Cirujeda J, Mas M, Molins E, Panthou FL, Laugier J, Park JG, Paulsen C, Rey P, Rovira C, Veciana J (1995) Control of the structural dimensionality in hydrogen-bonded self-assemblies of open-shell molecules. Extension of intermolecular ferromagnetic interactions in α-phenyl nitronyl nitroxide radicals into three dimensions. J Chem Soc Chem Commun 709–710

  7. Aakeroy CB (1998) Supramolecular assembly of low-dimensional silver(I) architectures via amide–amide hydrogen bonds. Chem Commun 1067–1068

  8. Johnson SN, Ellington TL, Ngo DT, Nevarez JL, Sparks N, Rheingold AL, Watkins DL, Tschumpe GS (2019) Probing non-covalent interactions driving molecular assembly in organo-electronic building blocks. CrystEngComm 21:3151–3157

    Article  CAS  Google Scholar 

  9. Balzani V, Credi A, Raymo FM, Stoddart JF (2000) Artificial molecular machines. Angew Chem Int Ed 39:3348–3391

  10. Lehn JM (1988) Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices. Angew Chem Int Ed 27:89–112

    Article  Google Scholar 

  11. Jeffery GA (1997) Introduction to hydrogen bonding. Wiley, Chichester

    Google Scholar 

  12. Braga D, Grapioni F, Desiraju GR (1998) Crystal engineering and organometallic architecture. Chem Rev 98:1375–1406

    Article  CAS  PubMed  Google Scholar 

  13. Subramanian S, Zaworotko J (1994) Exploitation of the hydrogen bond: recent developments in the context of crystal. Coord Chem Rev 137:357–401

    Article  CAS  Google Scholar 

  14. Desiraju GR (1995) Supramolecular synthons in crystal engineering-a new organic synthesis. Angew Chem Int Ed Engl 34:2311–2327

    Article  CAS  Google Scholar 

  15. Dalrymple SA, Shimizu GKH (2003) Exploiting complementary second-sphere effects in supramolecular coordination solids. Supramol Chem 15:591–606

    Article  CAS  Google Scholar 

  16. Zhou P, Steve CF, Yeung A, Xu XP (1999) A DFT and 59Co solid-state NMR study of the second-sphere interaction in polyammonium macrocycles cobalt cyanide super complexes. J Am Chem Soc 121:1030–1036

    Article  CAS  Google Scholar 

  17. Crumbliss AL, Baltinic-Haberle I, Spasojevic I (1996) Molecular recognition of stable metal complexes through second-sphere coordination by macrocycles. Pure Appl Chem 68:1225–1230

    Article  CAS  Google Scholar 

  18. Siegbahn PEM (1996) Solvent effects on the relative stability of the PdCl2 (H2O)n and PdHCl (H2O)n cis and trans isomers. Mol Phys 89:279–296

    Article  ADS  CAS  Google Scholar 

  19. Botta M (2000) Second coordination sphere water molecules and relaxivity of gadolinium-(III) complexes: implications for MRI contrast agents. Eur J Inorg Chem 399–407

  20. Bleuzen A, Foglia F, Furet E, Helm L, Merbach A, Weber J (1996) Second coordination shell water exchange rate and mechanism: experiments and modeling on hexaaquachromium(III). J Am Chem Soc 118:12777–12787

    Article  CAS  Google Scholar 

  21. Sharma RP, Saini A, Kumar J, Kumar S, Venugopalan P, Ferretti V (2017) Coordination complexes of copper(II) with herbicide-trichlorophenoxyacetate: syntheses, characterization, single crystal X-ray structure and packing analyses of monomeric [Cu(γ-pic)3(2,4,5-trichlorophenoxyacetate)2]·H2O, [trans-Cu(en)2(2,4,5-trichlorophenoxyaceta te)2]·2H2O and dimeric [Cu2(H2tea)2(2,4,5-trichlorophenoxyacetate)2]·2(H2O). Inorg Chim Acta 457:59–68

    Article  CAS  Google Scholar 

  22. Sharma RP, Saini A, Kumar S, Kumar J, Kumar S, Venugopalan P, Gondil VS, Chibber S, Aree T (2017) Diaquabis(ethylenediamine)copper(II) vs. monoaquabis(ethylenediamine) copper(II): synthesis, characterization, single crystal X-ray structure determination, theoretical calculations and antimicrobial activities of [Cu(en)2(H2O)2] (2-phenoxybenzoate)2·H2O and [Cu(en)2(H2O)](diphenylacetate)2. Polyhedron 123:430–440

    Article  CAS  Google Scholar 

  23. Sharma RP, Saini A, Singh S, Venugoplalan P, Ferretti V (2010) Two new second sphere coordination complexes of copper(II): syntheses, characterization, single crystal structure and packing analyses of [trans-Cu(en)2(H2O)2](L1/L2)2 where L1 = 3-methoxybenzoate, L2 = 3,4,5-trimethoxybenzoate. J Mol Struct 979:128–135

    Article  ADS  CAS  Google Scholar 

  24. Sharma RP, Saini A, Singh S, Singh A, Venugopalan P, Ferretti V (2010) Second sphere coordination complexes: synthesis, characterization, single crystal structure and packing analyses of [trans-Cu(en)2(H2O)2](L1/L2)2 where L1 = p-toluenesulphonate, L2 = 5-bromo-2-methoxybenzenesulphonate. J Mol Struct 969:155–162

    Article  ADS  CAS  Google Scholar 

  25. Duan J, Jiang J, Gong J, Fan Q, Jiang D (2000) Robust and smart hydrogels based on natural polymers. J Mol Cat A 159:89–96

    Article  CAS  Google Scholar 

  26. Dongamanti A, Gadiparthi R, Redamala R, Anireddy J, Vantikommu J (2012) Convenient synthesis of phenolic esters of o-bromo-substituted phenylacetic acids. Der Pharm Chem 4:650–654

    CAS  Google Scholar 

  27. Huang H, Xia C, Xie P (2013) Process for synthesizing phenylacetic acid by carbonylation of toluene. US patent 20130303798:A1

    Google Scholar 

  28. Milne JE, Storz T, Colyer JT, Thiel OR, Seran MD, Larsen RD, Murry JA (2011) Iodide-catalyzed reductions: development of a synthesis of phenylacetic acids. J Org Chem 76:9519–9524

    Article  CAS  PubMed  Google Scholar 

  29. Zhang JS, Zhou WC, Zhang WD, Yu YX (2021) An efficient ternary photocatalyst via anchoring nickel complex and nickel oxides onto carbon nitride for visible light driven H2 evolution. In J Hydrog Energy 46:7782–7793

    Article  CAS  Google Scholar 

  30. Grubel M, Bosque I, Altmann PJ, Bach T, Hess CR (2018) Redox and photocatalytic properties of a NiII complex with a macrocyclic biquinazoline (Mabiq) ligand. ChemSci 9:3313–3317

    Google Scholar 

  31. Harman CG, King BW (1952) Applications of nickel compounds in ceramics. J Ind Eng Chem 44:1015–1017

    Article  CAS  Google Scholar 

  32. Sultan M, Tahir AA, Mazhar M, Zeller Z, Wijayantha KGU (2012) Hexanuclear copper–nickel and copper–cobalt complexes for thin film deposition of ceramic oxide composites. New J Chem 36:911–917

    Article  CAS  Google Scholar 

  33. Ikorskii VN, Ovcharenko VI, Shvedenkov YG, Romanenko GV, Fokin SV, Sagdeev RZ (1998) RZ. Molecular magnets based on nickel(II) complexes with 3-imidazoline nitroxides and alcohols. Inorg Chem 37:4360–4367

    Article  CAS  PubMed  Google Scholar 

  34. Ragsdale SW (1998) Nickel biochemistry. Curr Opin Chem Bio 2:208–215

    Article  CAS  Google Scholar 

  35. Sohail M, Molloy KC, Mazhar M, Kohn GK, Khosa MK (2006) Tris(ethylenediamine)nickel(II) tetraiodocadmate(II). Acta Crystallorg Sec E62:m394–m396

    Article  Google Scholar 

  36. Srinivasan BR, Rane GK (2009) Synthesis, properties and supramolecular structure of di(aqua)bis(ethylenediamine)nickel(II) bis(4-nitrobenzoate). J Chem Sci 121:145–153

    Article  CAS  Google Scholar 

  37. Otwinowski Z, Minor Z (1977) In: Carter CW, Sweet RM (ed) Methods in enzymology, Academic Press London A 276:307–326

  38. Blessing RH (1995) Direct methods for solving macromolecular structures. Acta Crystallogr Sec A 51:33–38

    Article  ADS  Google Scholar 

  39. Altomare A (1999) Burla Mc, Camalli M, Cascarano GL, Giacovazzo C, Guagliardi A, Grazia A, Moliterni G, Polidori G, Spagna RJ. J App Crystallogr 32:115–119

    Article  CAS  Google Scholar 

  40. Sheldrick GM. SHELXTL version 2014/7. http://shelx.uni-ac.gwdg.de/SHELX/index.php

  41. Farrugia J (1999) WinGX suite for small-molecule single-crystal crystallography. J Appl Crystallogr 32:837–838

    Article  ADS  CAS  Google Scholar 

  42. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, Fabris S, Fratesi G, de Gironcoli S, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:1–36

    Article  Google Scholar 

  43. Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli MB, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Dal Corso A, de Gironcoli S, Delugas P, DiStasio RA Jr, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko HY, Kokalj A, Kucukbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen NL, Nguyen HV, Otero-de-la-Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen AP, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, Baroni S (2017) Advanced capabilities for materials modelling with Quantum ESPRESSO. J Phys Condens Matter 29:465901

    Article  CAS  PubMed  Google Scholar 

  44. Beck AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403

    Article  ADS  Google Scholar 

  45. Bader FW (1994) Atoms in molecules: a quantum theory. Oxford University Press, New York

    Google Scholar 

  46. Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules-from solid state to DNA and drug design. WILEY-VCH Verlag GmbH & Co. KgaA, Weinheim

    Book  Google Scholar 

  47. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcıa J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Saini A, Sharma RP, Kaur P, Bansal P, Kaur P, Ferretti V, Kandwal P (2021) Synthesis, characterization, X-ray structural analysis, DFT and BSA binding study of a Zn(II) complex, [Zn(II)Cl2(nia)2].2nia. J Coord Chem 74:2741–2763

    Article  CAS  Google Scholar 

  49. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11:19–32

    Article  CAS  Google Scholar 

  50. Spackman PR, Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Jayatilaka D, Spackman MA (2021) CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J Appl Crystallorg 54:1006–1011

    Article  ADS  CAS  Google Scholar 

  51. Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds, 5th edn. John Wiley and Sons, New York

    Google Scholar 

  52. Orgel LE (1955) Spectra of transition-metal complexes. J Chem Phys 23:1004–1014

    Article  ADS  CAS  Google Scholar 

  53. Biswas A, Drew MGB, Gomez-García CJ, Ghosh A (2017) Formation of a dinuclear and a trinuclear Ni (II) complex on slight variation of experimental conditions: structural analysis and magnetic properties. Polyhedron 121:80–87

    Article  CAS  Google Scholar 

  54. Burnett MN, Johnson CK (1996) ORTEPIII: Oak Ridge Thermal Ellipsoid Plot Program for crystal structure illustrations, Report ORNL-6895, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

  55. Srinivasan BR, Naik AR, Nather C, Pausch H, Bensch W (2009) Synthesis and structural characterization of tris(ethylenediamine)nickel(II) dichromate. J Coord Chem 62:3583–3591

    Article  CAS  Google Scholar 

  56. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2000) The magnitude of the CH/π interaction between benzene and some model hydrocarbons. J Am Chem Soc 122:3746–3753

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Parmjeet Kaur: prepared sample and did preliminary analysis. Paramjeet Kaur: spectroscopic analysis. Anju Saini and Priti Bansal: wrote main manuscript and analyzed the results of different studies. Santosh Kumar and Valeria Ferretti: X-ray analysis. Pankaj Kandwal: DFT studies and Hirshfeld surface analysis. Anju Saini and Priti Bansal reviewed the paper.

Corresponding author

Correspondence to Anju Saini.

Ethics declarations

Ethical approval

NA.

Competing interests

NA.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 352 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, P., Saini, A., Kaur, P. et al. Harnessing of non-covalent interaction in novel [Ni(en)3](2-chlorophenylacetate)2 second sphere complex: Synthesis, characterization, single crystal structural, DFT, and Hirshfeld surface analysis. Struct Chem (2024). https://doi.org/10.1007/s11224-023-02267-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11224-023-02267-0

Keywords

Navigation