Skip to main content
Log in

Electrochemical performance of sodiated 1,4-benzoquinone conformers

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The exploration on the redox properties of sodiated quinone molecules as organic cathode material in sodium-ion batteries has been comprehensively studied. As the electrochemical performance of the cathode material is known to depend on the intrinsic molecular properties such as conformations, the present work focuses on the redox properties of sodiated 1,4-benzoquinone (1,4-BQ) conformers employing the density functional theory. Such investigation on the sodiated structures might provide insight on the discharge state of the puckered conformers. The 38 conformers of 1,4-BQ (2 chairs, 6 boats, 6 skew-boats, 12 half-chairs, 12 envelopes) constructed from the torsion angles given by Berces et al. are optimized at B3LYP/6–311 + G(d,p) level of theory and their structural propensities during the reduction process are explored. The influence of puckering over the charge distribution of neutral, anionic and sodiated structures is analysed using the natural bond orbital method. The electrochemical performance of Na incorporated conformers is explored through the calculation of electron affinity, change in Gibbs free energies and redox potentials. The conductor-like polarizable continuum model (C-PCM) is used to include the solvation effects of the electrolyte such as ethylene carbonate. A good correlation between the conformers with more negative lowest unoccupied molecular orbital (LUMO) energies and their redox potentials and electron affinity is observed. Noticeable variation in the frontier energies and redox potentials of the sodiated quinone conformers emphasize the significance of intrinsic molecular level properties to play a major role in the overall electrochemical performance of quinone-like electrode materials in sodium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Data can be obtained from the corresponding authors through email.

References

  1. Deuchert K, Hünig S (1978) Multistage organic redox systems—a general structural principle. Angew Chem Int Ed 17:875–886

    Article  Google Scholar 

  2. Wu Y, Zeng R, Nan J, Shu D, Qiu Y, Chou S-L (2017) Quinone electrode materials for rechargeable lithium/sodium ion batteries. Adv Energy Mater 7:1700278

    Article  Google Scholar 

  3. Schwan S, Schröder D, Wegner HA, Janek J, Mollenhauer D (2020) Substituent pattern effects on the redox potentials of quinone-based active materials for aqueous redox flow batteries. Chemsuschem 13:5480–5488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Miao L, Liu L, Shang Z, Li Y, Lu Y, Cheng F, Chen J (2018) The structure–electrochemical property relationship of quinone electrodes for lithium-ion batteries. Phys Chem Chem Phys 20:13478–13484

    Article  CAS  PubMed  Google Scholar 

  5. Jayachandran P, Angamuthu A, Gopalan P (2021) Redox potentials of puckered 1,4-benzoquinone. J Chem Sci 134:29

    Article  Google Scholar 

  6. Kim KC, Liu T, Jung KH, Lee SW, Jang SS (2019) Unveiled correlations between electron affinity and solvation in redox potential of quinone-based sodium-ion batteries. Energy Storage Mater 19:242–250

    Article  Google Scholar 

  7. Huynh MT, Anson CW, Cavell AC, Stahl SS, Hammes-Schiffer S (2016) Quinone 1 e– and 2 e–/2 H+ reduction potentials: identification and analysis of deviations from systematic scaling relationships. J Am Chem Soc 138:15903–15910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Han C, Li H, Shi R, Zhang T, Tong J, Li J, Li B (2019) Organic quinones towards advanced electrochemical energy storage: recent advances and challenges. J Mater Chem 7:23378–23415

    Article  CAS  Google Scholar 

  9. Tabor DP, Gómez-Bombarelli R, Tong L, Gordon RG, Aziz MJ, Aspuru-Guzik A (2019) Mapping the frontiers of quinone stability in aqueous media: implications for organic aqueous redox flow batteries. J Mater Chem A 7:12833–12841

    Article  CAS  Google Scholar 

  10. Lyu H, Sun X-G, Dai S (2021) Organic cathode materials for lithium-ion batteries: past, present, and future. Adv Energy Sus Res 2:2000044

    Article  CAS  Google Scholar 

  11. Lyu H, Jafta CJ, Popovs I, Meyer HM, Hachtel JA, Huang J, Sumpter BG, Dai S, Sun X-G (2019) A dicyanobenzoquinone based cathode material for rechargeable lithium and sodium ion batteries. J Mater Chem A 7:17888–17895

    Article  CAS  Google Scholar 

  12. Luo Z, Liu L, Zhao Q, Li F, Chen J (2017) An insoluble benzoquinone-based organic cathode for use in rechargeable lithium-ion batteries. Angew Chem Int Ed 56:12561–12565

    Article  CAS  Google Scholar 

  13. Kim KC, Liu T, Lee SW, Jang SS (2016) First-principles density functional theory modeling of Li binding: thermodynamics and redox properties of quinone derivatives for lithium-ion batteries. J Am Chem Soc 138:2374–2382

    Article  CAS  PubMed  Google Scholar 

  14. Er S, Suh C, Marshak MP, Aspuru-Guzik A (2015) Computational design of molecules for an all-quinone redox flow battery. Chem Sci 6:885–893

    Article  CAS  PubMed  Google Scholar 

  15. Jung KH, Lim S, Choi S, Kim KC (2021) Unraveling three-stage discharging behaviors of bio-inspired organic cathode materials. Adv Funct Mater 31:2105285

    Article  CAS  Google Scholar 

  16. Jung KH, Jeong GS, Joo JB, Kim KC (2019) Improving the understanding of the redox properties of fluoranil derivatives for cathodes in sodium-ion batteries. Chemsuschem 12:4968–4975

    Article  CAS  PubMed  Google Scholar 

  17. Bachman JE, Curtiss LA, Assary RS (2014) Investigation of the redox chemistry of anthraquinone derivatives using density functional theory. J Phys Chem A 118:8852–8860

    Article  CAS  PubMed  Google Scholar 

  18. Bock H, Rupper K, Näther C, Havlas Z (1991) Structural changes on twofold oxidation of tetrakis(dimethylamino)-p-benzoquinone: a sterically overcrowded electron-rich “chair” compound turns into a “twist” dicyanine salt, Angew. Chem Int 30:1180–1183

    Google Scholar 

  19. Kazuya K, Min S, Yoshihisa I (1999) p-Benzoquinone 2,3,5,6-tetrakis(diisopropyl phosphonate): a novel, highly bent p-benzoquinone. Chem Lett 28:633–634

    Article  Google Scholar 

  20. Christl M, Braun M, Deeg O (2013) Photochemical reactions of tetrachloro-1,4-benzoquinone (chloranil) with tricyclo[4.1.0.02,7]heptane (Moore’s hydrocarbon) and bicyclo[4.1.0]hept-2-ene (2-norcarene). Org Biomol Chem 11:2811–2817

  21. Wilklow-Marnell M, Brennessel WW, Jones WD (2018) Reactivity of iPrPCPIrH4 with para-benzoquinones. Polyhedron 143:209–214

    Article  CAS  Google Scholar 

  22. Sakamoto K, Tsutsui S, Ebata K, Kabuto C, Sakurai H (2000) Synthesis, structure, and photochemistry of tetrakis(trimethylsilyl)-p-benzoquinone. Chem Lett 29:226–227

    Article  Google Scholar 

  23. Bérces A, Whitfield DM, Nukada T (2001) Quantitative description of six-membered ring conformations following the IUPAC conformational nomenclature (http://6ring.bio.nrc.ca/), Tetrahedron 57:477–491; (http://476ring.bio.nrc.ca/)

  24. Jeong GS, Lee DK, Kim KC (2020) Crucial role of cyanides for high-potential electrochemical reduction reaction. Energy Storage Mater 29:140–148

    Article  Google Scholar 

  25. Araujo RB, Banerjee A, Ahuja R (2017) Divulging the hidden capacity and sodiation kinetics of NaxC6Cl4O2: a high voltage organic cathode for sodium rechargeable batteries. J Phys Chem C 121:14027–14036

    Article  CAS  Google Scholar 

  26. Wu X, Kang F, Duan W, Li J (2019) Density functional theory calculations: a powerful tool to simulate and design high-performance energy storage and conversion materials. Progress in Natural Science: Materials International 29:247–255

    Article  CAS  Google Scholar 

  27. Becke AD (1993) Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

  28. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  29. Wang X, Shang Z, Yang A, Zhang Q, Cheng F, Jia D, Chen J (2019) Combining quinone cathode and ionic liquid electrolyte for organic sodium-ion batteries. Chem 5:364–375

    Article  CAS  Google Scholar 

  30. Frontana C, Vázquez-Mayagoitia Á, Garza J, Vargas R, González I (2006) Substituent effect on a family of quinones in aprotic solvents: an experimental and theoretical approach. J Phys Chem A 110:9411–9419

    Article  CAS  PubMed  Google Scholar 

  31. Yu J, Zhao TS, Pan D (2020) Tuning the performance of aqueous organic redox flow batteries via first-principles calculations. J Phys Chem Lett 11:10433–10438

    Article  CAS  PubMed  Google Scholar 

  32. Lin Z, Shi H-Y, Lin L, Yang X, Wu W, Sun X (2021) A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries. Nat Commun 12:4424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shi R, Liu L, Lu Y, Wang C, Li Y, Li L, Yan Z, Chen J (2020) Nitrogen-rich covalent organic frameworks with multiple carbonyls for high-performance sodium batteries. Nat Commun 11:178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Biarnés X, Nieto J, Planas A, Rovira C (2006) Substrate distortion in the Michaelis complex of Bacillus 1,3–1,4-β-glucanase: insight from first principles molecular dynamics simulations *. J Biol Chem 281:1432–1441

    Article  PubMed  Google Scholar 

  35. Kang YK, Park HS (2018) Puckering transitions in cyclohexane: revisited. Chem Phys Lett 702:82–89

    Article  CAS  Google Scholar 

  36. Mayes HB, Broadbelt LJ, Beckham GT (2014) How sugars pucker: electronic structure calculations map the kinetic landscape of five biologically paramount monosaccharides and their implications for enzymatic catalysis. J Am Chem Soc 136:1008–1022

    Article  CAS  PubMed  Google Scholar 

  37. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681

    Article  CAS  PubMed  Google Scholar 

  38. Winget P, Cramer CJ, Truhlar DG (2004) Computation of equilibrium oxidation and reduction potentials for reversible and dissociative electron-transfer reactions in solution. Theor Chem Acc 112:217–227

    Article  CAS  Google Scholar 

  39. Calbo J, Viruela R, Ortí E, Aragó J (2016) Relationship between electron affinity and half-wave reduction potential: a theoretical study on cyclic electron-acceptor compounds. Chem Phys Chem 17:3881–3890

    Article  CAS  PubMed  Google Scholar 

  40. Huan L, Xie J, Chen M, Diao G, Zhao R, Zuo T (2017) Theoretical investigation of pillar[4]quinone as a cathode active material for lithium-ion batteries. J Mol Model 23:105

    Article  PubMed  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox D (2009) Gaussian 09, Revision B.01, Gaussian 09, Revision B.01 

  42. Sieuw L, Jouhara A, Quarez É, Auger C, Gohy J-F, Poizot P, Vlad A (2019) A H-bond stabilized quinone electrode material for Li–organic batteries: the strength of weak bonds. Chem Sci 10:418–426

    Article  CAS  PubMed  Google Scholar 

  43. Jalilov AS, Lu J, Kochi JK (2016) Charge-transfer complex formations of tetracyanoquinone (cyanil) and aromatic electron donors. J Phys Org Chem 29:35–41

    Article  Google Scholar 

  44. Hayashi N, Yoshikawa T, Ohnuma T, Higuchi H, Sako K, Uekusa H (2007) Synthesis, structure, and properties of benzoquinone dimer and trimers bearing t-Bu substituents. Org Lett 9:5417–5420

    Article  CAS  PubMed  Google Scholar 

  45. Weber J, Malsch K, Hohlneicher G (2001) Excited electronic states of p-benzoquinone. Chem Phys 264:275–318

    Article  CAS  Google Scholar 

  46. Lü J-M, Rosokha SV, Neretin IS, Kochi JK (2006) Quinones as electron acceptors. X-ray structures, spectral (EPR, UV−vis) characteristics and electron-transfer reactivities of their reduced anion radicals as separated vs contact ion pairs. J Am Chem Soc 128:16708–16719

  47. Abbu V, Nampally V, Baindla N, Tigulla P (2019) Stoichiometric, thermodynamic and computational DFT analysis of charge transfer complex of 1-benzoylpiperazine with 2, 3-dichloro-5, 6-dicyano-1, 4-benzoquinone. J Solut Chem 48:61–81

    Article  CAS  Google Scholar 

  48. Kuhn A, von Eschwege KG, Conradie J (2012) Reduction potentials of para-substituted nitrobenzenes—an infrared, nuclear magnetic resonance, and density functional theory study. J Phys Org Chem 25:58–68

    Article  CAS  Google Scholar 

  49. Sroka A, Majerz I (2016) A ring conformation of androstan-3-one. Mol Phys 114:2037–2045

    Article  CAS  Google Scholar 

  50. Zhong F, Zhao J, Hayvali M, Elmali A, Karatay A (2019) Effect of molecular conformation restriction on the photophysical properties of N^N platinum(II) bis(ethynylnaphthalimide) complexes showing close-lying 3MLCT and 3LE excited states. Inorg Chem 58:1850–1861

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

PG is grateful to the GRG-TRUST for providing the necessary computational facilities and infrastructure to carry out the present work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, data curation, writing — original draft preparation: Pavithra Jayachandran. Conceptualization, investigation, validation, software, supervision, reviewing and editing: Praveena Gopalan. Software, reviewing and editing: Abiram Angamuthu.

Corresponding author

Correspondence to Praveena Gopalan.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10096 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayachandran, P., Angamuthu, A. & Gopalan, P. Electrochemical performance of sodiated 1,4-benzoquinone conformers. Struct Chem 34, 1895–1909 (2023). https://doi.org/10.1007/s11224-023-02132-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-023-02132-0

Keywords

Navigation