Skip to main content
Log in

Heteroatom-bridged pillar[4]quinone: evolutionary active cathode material for lithium-ion battery using density functional theory

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Quinone-based macrocyclic compounds have been proposed as promising electrode materials for rechargeable lithium-ion batteries (LIBs). To improve the electrochemical performance, in this paper, two heteroatom-bridged pillar[4]quinones (namely, oxa- and thia-pillar[4]quinones) are presented as active cathode materials for LIBs. The geometry structures, electronic structural properties, and electrochemical properties of these new species are calculated by Density Functional Theory (DFT) at the M06-2X/6-31G(d,p) level of theory. Two heteroatom-bridged pillar[4]quinones possess higher theoretical specific capacity (659 mA h g−1 and 582 mA h g−1 for oxa- and thia- pillar[4]quinones, respectively) than that of parental pillar[4]quinone (446 mA h g−1). The electrochemical performances of oxa- and thia-pillar[4]quinones are predicted theoretically to be superior to those of pillar[4]quinone as cathode material for LIBs. Compared with oxa-pillar[4]quinone, thia-pillar[4]quinone is predicted to be slightly more suitable as cathode electrode material. These results may provide fresh ideas and guidelines for enhancing the performance of quinones organic electrode materials for LIBs.

Graphic Abstract

Two heteroatom-bridged pillar[4]quinones, Oxapillar[4]quinone and Thiapillar[4]quinone, are proposed as the electrode active molecules. The lithium storage mechanisms and electrochemical properties are investigated by using DFT calculations. The results show that the heteroatom-bridged pillar[4]quinones are predicted theoretically to exihibit a better electrode material performance than the parent pillar[4]quinone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Novak P, Muller K, Santhanam S V and Hass O 1997 Electrochemically active polymers for rechargeable batteries Chem. Rev. 97 207

    CAS  Google Scholar 

  2. Arman M and Tarascon J M 2008 Building better batteries Nature 451 652

    Google Scholar 

  3. Poizot P and Dolhem F 2011 Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices Energy Environ. Sci. 4 2003

    Article  CAS  Google Scholar 

  4. Liang Y, Tao Z and Chen J 2012 Organic electrode materials for rechargeable lithium batteries Adv. Energy Mater. 2 742

    Article  CAS  Google Scholar 

  5. Nishide H and Oyaizu K 2008 Toward flexible batteries Science 319 737

    Article  CAS  PubMed  Google Scholar 

  6. Guo W, Yin Y X, Xin S, Guo Y G and Wan L J 2012 Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene Energy Environ. Sci. 5 5221

    Article  CAS  Google Scholar 

  7. Janoschka T, Hager M D and Schubert U S 2012 Carbonyls: powerful organic materials for secondary batteries Adv. Mater. 24 6397

    Article  CAS  PubMed  Google Scholar 

  8. Li Y J, Zhan H, Kong L B, Zhan C M and Zhou Y H 2007 Electrochemical properties of PABTH as cathode materials for rechargeable lithium battery Electrochem. Commun. 9 1217

    Article  CAS  Google Scholar 

  9. Fanous J, Wegner M, Grimminger J, Andresen A and Buchmeiser M R 2011 Structure-related electrochemistry of sulfur-poly(acrylonitrile) composite cathode materials for rechargeable lithium batteries Chem. Mater. 23 5024

    Article  CAS  Google Scholar 

  10. Amin K, Mao L and Wei Z 2019 Recent progress in polymeric carbonyl-based electrode materials for lithium and sodium ion batteries Macromol. Rapid Commun. 40 1800565

    Article  CAS  Google Scholar 

  11. Song Z P, Zhan H and Zhou Y H 2010 Polyimides: promising energy-storage materials Angew. Chem. Int. Ed. 49 8444

    Article  CAS  Google Scholar 

  12. Song Z P, Xu T, Gordin M L, Jiang Y B, Bae I T, Xiao Q F, Zhan H, Liu J and Wang D H 2012 Polymer-graphene nanocomposites as ultrafast-charge and-discharge cathodes for rechargeable lithium batteries Nano. Lett. 12 2205

    Article  CAS  PubMed  Google Scholar 

  13. Nokami T, Matsuo T, Inatomi Y, Hojo N, Tsukagoshi T, Yoshizawa H, Shimizu A, Kuramoto H, Komae K, Tsuyama H and Yoshida J-i 2012 Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity J. Am. Chem. Soc. 134 19694

    Article  CAS  PubMed  Google Scholar 

  14. Hanyu Y and Honma I 2012 Rechargeable quasi-solid state lithium battery with organic crystalline cathode Sci. Rep. 2 453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Liang Y L, Zhang P, Yang S Q, Tao Z L and Chen J 2013 Fused heteroaromatic organic compounds for high-power electrodes of rechargeable lithium batteries Adv. Energy Mater. 3 600

    Article  CAS  Google Scholar 

  16. Huang W, Zhu Z, Wang L, Wang S, Li H, Tao Z, Shi J, Guan L and Chen J 2013 Angew. Chem. Int. Ed. 52 9162

    Article  CAS  Google Scholar 

  17. Chen H, Armand M, Demailly G, Dolhem F, Poizot P and Tarascon J M 2008 From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. ChemSusChem 1 348

  18. Liu K, Zheng J, Zhong G and Yang Y 2011 Poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide) (PDBS) as a cathode material for lithium ion batteries J. Mater. Chem. 21 4125

    Article  CAS  Google Scholar 

  19. Liang Y L, Zhang P, Tao Z L and Chen J 2013 Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries Chem. Sci. 4 1330

    Article  CAS  Google Scholar 

  20. Zhu Z, Hong M, Guo D, Shi J, Tao Z and Chen J 2014 All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone Cathode J. Am. Chem. Soc. 136 16461

    Article  CAS  PubMed  Google Scholar 

  21. Huan L, Xie J, Chen M, Diao G W, Zhao R F and Zuo T F 2017 Theoretical investigation of pillar[4]quinone as a cathode active material for lithium-ion batteries J. Mol. Model. 23 105

    Article  PubMed  CAS  Google Scholar 

  22. Huan L, Xie J, Huang Z L, Chen M, Diao G W and Zuo T F 2017 Computational electrochemistry of pillar[5]quinone cathode material for lithium-ion batteries Comp. Mater. Sci. 137 233

    Article  CAS  Google Scholar 

  23. Yokoji T, Matsubara H and Satoh M 2014 Rechargeable organic lithium-ion batteries using electron-deficient benzoquinones as positive electrode materials with high discharge voltages J. Mater. Chem. A 2 19347

    Article  CAS  Google Scholar 

  24. Assary R S, Brushett F R and Curtiss L A 2014 Reduction potential predictions of some aromatic nitrogen-containing molecules RSC Adv. 4 57442

    Article  CAS  Google Scholar 

  25. Lao K and Yu C 2011 A computational study of unique properties of pillar[n]quinones: self-Assembly to tubular structures and potential applications as electron acceptors and anion recognizers J. Comput. Chem. 32 2716

    Article  CAS  PubMed  Google Scholar 

  26. Kumagai H, Hasegawa M, Miyanan S, Sugawa Y, Sato Y, Hori T, Ueda T, Kamiyama H and Miyano S 1997 Facile synthesis of p-tert-butylthiacalix[4]arene by the reaction of p-tert-butylphenol with elemental sulfur in the presence of a base. Tetrahedron Lett. 38 3971

  27. König B and Fonseca M H 2000 Heteroatom-bridged calixarenes Eur. J. Inorg. Chem. 11 2303

    Article  Google Scholar 

  28. Katz J L, Feldman M B and Conry R R 2005 Synthesis of functionalized oxacalix[4]arenes Org. Lett. 7 91

    Article  CAS  PubMed  Google Scholar 

  29. Wang M X 2012 Nitrogen and oxygen bridged calixaromatics: synthesis, structure, functionalization, and molecular recognition Acc. Chem. Res. 45 182

    Article  CAS  PubMed  Google Scholar 

  30. Thomas J, Rossom W V, Hecke K V, Meervelt L V, Smet M, Maes W and Dehaen W 2012 Selenaxalix[3]triazines: synthesis and host-guest chemistry Chem. Commun. 48 43

    Article  CAS  Google Scholar 

  31. Thomas J, Dobrzańska L, Van H K, Sonawane M P, Robeyns K, Van M L, Woźniak K, Smet M, Meas W and Dehaen W 2012 Homoselenacalix[4]arenes: synthetic exploration and metallosupramolecular chemistry Org. Biomol. Chem. 10 6526

    Article  CAS  PubMed  Google Scholar 

  32. Zuo C, Wiest O and Wu Y 2011 Structures and conformations of heteroatom-bridged calixarenes J. Phys. Org. Chem. 24 1157

    Article  CAS  Google Scholar 

  33. Xie J, Shen C, Shi H, Luo S, He M and Chen M 2020 Theoretical prediction of structures and inclusion properties of heteroatom-bridged pillar[n]arenes Struct. Chem. 31 329

    Article  CAS  Google Scholar 

  34. Shivakumar K I and Sanjayan G J 2013 An easy and multigram-scale synthesis of pillar[5]quinone by the hypervalent iodine oxidation of 1,4-dimethoxypillar[5]arene Synthesis 45 896

  35. Bruce P G, Freunberger S A, Hardwick L J and Tarascon J-M 2012 Li-O2 and Li-S batteries with high energy storage Nature Mat. 11 19

  36. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa, J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J and Fox D J 2010 Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford, CT

  37. Zhao Y and Truhlar D G 2008 Density functionals with broad applicability in chemistry Chem. Res. 41 157

    Article  CAS  Google Scholar 

  38. Zhao Y and Truhlar D G 2008 The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals Theor. Chem. Acc. 120 215

    Article  CAS  Google Scholar 

  39. Glendening E D, Reed A E, Carpenter J E and Weinhold F, NBO 3.1 Program as Implemented in Gaussian 09 Package.

  40. Lange A W and Herbert J M 2010 Polarizable continuum reaction-field solvation models affording smooth potential energy surfaces J. Phys. Chem. Lett. 1 556

    Article  CAS  Google Scholar 

  41. Jouyban A and Soltanpour S 2010 Prediction of dielectric constants of binary solvents at various temperatures J. Chem. Eng. Data 55 2961

    Google Scholar 

  42. Zu C X and Li H 2011 Thermodynamic analysis on energy densities of batteries Energy Environ. Sci. 4 2614

    Article  CAS  Google Scholar 

  43. Bachman J E, Curtiss L A and Assary R S 2014 Investigation of the redox chemistry of anthraquinone derivatives using density functional theory J. Phys. Chem. A 118 8852

    Article  CAS  PubMed  Google Scholar 

  44. Dardenne N, Blase X, Hautier G, Charlier J-C and Rignanese G-M 2015 Ab initio calculations of open-cell voltage in Li-ion organic radical batteries J. Phys. Chem. C 119 23373

    Article  CAS  Google Scholar 

  45. Marenich A V, Ho J, Coote M L, Cramer C J and Truhlar D G 2014 Computational electrochemistry: prediction of liquid-phase reduction potentials Phys. Chem. Chem. Phys. 16 15068

    Article  CAS  PubMed  Google Scholar 

  46. Humphrey W, Dalke A and Schulten K 1996 VMD: Visual Molecular Dynamics J. Mole. Graphics 14 33

    Article  CAS  Google Scholar 

  47. Fallah-Bagher-Shaidaei H, Wannere C S, Corminboeuf C, Puchta R and Schleyer P V R 2006 Which NICS aromaticity index for planar π rings is best Org. Lett. 8 863

    Article  CAS  PubMed  Google Scholar 

  48. Lu T and Chen F W 2012 Multiwfn: A multifunctional wavefunction analyzer J. Comput. Chem. 33 58

    Google Scholar 

  49. Kim K C, Liu T, Lee S W and Jang S S 2016 First-principles density functional theory modeling of Li binding: thermodynamics and redox properties of quinone derivatives for lithium-ion batteries J. Am. Chem. Soc. 138 2374

    Article  CAS  PubMed  Google Scholar 

  50. Cheng B and Kaifer A E 2015 Cathodic voltammetric behavior of pillar[5]quinine in nonaqueous media. Symmetry effects on the electron uptake sequence J. Am. Chem. Soc. 137 9788

Download references

Acknowledgements

This work was supported by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD); Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP, PPZY2015B112); 111 Project, B12015; Graduate Research & Practice Innovation Program of Jiangsu Province (XKYCX18_052, XKYCX19_071).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ju Xie or Ming Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 545 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Shi, H., Shen, C. et al. Heteroatom-bridged pillar[4]quinone: evolutionary active cathode material for lithium-ion battery using density functional theory. J Chem Sci 133, 2 (2021). https://doi.org/10.1007/s12039-020-01863-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-01863-5

Keywords

Navigation