Skip to main content
Log in

Hydrogen-bonded structure and optical nonlinearities in the proton-transfer complex of 8-hydroxy-5-nitroquinoline with ρ-toluenesulfonic acid

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Single crystals of 8-hydroxy-5-nitroquinolinium p-toluene sulfonate (HNT) were grown by the slow evaporation solution growth technique. The structure was elucidated by single-crystal X-ray diffraction analysis, and the crystal belongs to the monoclinic system with the space group C2/c. The crystallinity of HNT was studied by powder X-ray diffraction analysis. The presence of functional groups was determined by FT-IR spectral analysis. The band gap energy is estimated by the application of the Kubelka–Munk algorithm. The charge transfer characteristic of the compound was studied by frontier molecular orbital (FMO) analysis. The first-order hyperpolarizability of the HNT molecule was found to be 285.45 × 10−30 esu, which is ~ 750 times higher compared to the reference urea molecule. Investigation of the intermolecular interactions and crystal studies packing via Hirshfeld surface analysis, based on single-crystal XRD, reveals that the close contacts are associated with molecular interactions. Fingerprint plots of the Hirshfeld surfaces were used to locate and analyze the percentage of hydrogen-bonding interactions. The Mulliken charge of the present molecule was theoretically analyzed. The Kurtz-Perry powder technique has been used to estimate the second harmonic generation. Observed small SHG and large hyperpolarizability are rationalized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

HNT:

8-Hydroxy-5-nitroquinolinium p-toluene sulfonate

FT-IR:

Fourier transform infrared spectroscopy

TG-DTA:

Thermo-gravimetric and differential thermal analysis

NLO:

Nonlinear optical

SHG:

Second harmonic generation

MEP:

Molecular electrostatic potential

DFT:

Density functional theory

FMO:

Frontier molecular orbitals

HOMO:

Highest occupied molecular orbital

LUMO:

Lowest unoccupied molecular orbital

UV–Vis DRS:

Ultraviolet visible near-infrared diffuse reflectance spectroscopy

XRD:

X-ray diffraction

CCDC:

Cambridge Crystallographic Data Centre

References

  1. Slodek M, Filapek G, Szafraniec I, Grudzka WA, Pisarski JG, Malecki L, Zur M, Grela WD, Krompiec S (2014) Synthesis, electrochemistry, crystal structures, and optical properties of quinoline derivatives with a 2,2′‐bithiophene. Eur J Org Chem 5256–5264

  2. Fox JJ (1910) XCIII-the salts of 8-hydroxyquinoline. J Chem Soc Trans 97:1119–1125

    Article  Google Scholar 

  3. Mason SF, Philp J, Smith BE (1968) Prototropic equilibria of electronically excited molecules. Part II. 3-, 6 and 7-Hydroxyquinoline. J Chem Soc A 3051–3056

  4. Ho CL, Li H, Wong WY (2014) Red to near-infrared organometallic phosphorescent dyes for OLED applications. J Organomet Chem 751:261–285

    Article  CAS  Google Scholar 

  5. Xie LH, Yin CR, Lai WY, Fan QL, Huang W (2012) Polyfluorene-based semiconductors combined with various periodic table elements for organic electronics. Prog Polym Sci 37:1192–1264

    Article  CAS  Google Scholar 

  6. Guo X, Baumgarten M, Muellen K (2013) Designing π-conjugated polymers for organic electronics. Prog Polym Sci 38:1832–1908

    Article  CAS  Google Scholar 

  7. Kalyani NT, Dhoble SJ (2012) Organic light emitting diodes: energy saving lighting technology-a review. Renewable Sustainable Energy Rev 16:2696–2723

    Article  Google Scholar 

  8. Baghernejad B (2011) Application of p-toluenesulfonic acid (PTSA) in organic synthesis. Curr Org Chem 15:3091–3097

    Article  CAS  Google Scholar 

  9. Mahindaratne MPD, Wimalasena K (1998) Detailed characterization of p-toluenesulfonic acid monohydrate as a convenient, recoverable, safe, and selective catalyst for alkylation of the aromatic nucleus. J Org Che 632858–2866

  10. Anandha Babu G, Ramasamy P (2011) Growth and characterization of 2-amino-4-picolinium toluene sulfonate single crystal. Spectrochimica Acta Part A 82:521–526

    Article  CAS  Google Scholar 

  11. Ramesh Kumar R, Sathya P, Gopalakrishnan R (2016) Structural, vibrational, thermal and optical studies of organic single crystal: benzotriazolium p-toluene sulfonate (BTPTS). AIP Conf Proc 1728:020508

    Article  Google Scholar 

  12. Anandha Babu G, Perumal Ramasamy R, Ramasamy P, Krishna Kumar V (2009) Synthesis, crystal growth, and characterization of an organic nonlinear optical donor-π-acceptor single crystal:2-amino-5-nitropyridinium-toluenesulfonate. Cryst Growth Des 9:3333–3337

    Article  Google Scholar 

  13. Thailam pillai balasubramanian, Packianathan thamos muthaiah, (1996) 8-hydroxy-7-nitroquinoline-5-sulfonic acid monohydrate. Acta Cryst C 52:1017–1019

    Article  Google Scholar 

  14. Muralidharan S, Nagapandiselvi P, Srinivasan T, Gopalakrishnan R, Velmurugan D (2013) L-histidinium p-toluenesulfonate Acta Cryst E 69:0804

    Article  Google Scholar 

  15. Coe Benjamin J, Hall Jonathan J, Harris James A, Brun schwig Bruce S, Coles Simon J, Hursthouse Michael B (2005) trans-4-[(4-dimethylaminophenyl)ethenyl]-N-methylquinolinium p-toluenesulfonate monohydrate. Acta Cryst E 61:0464–0467

    Article  Google Scholar 

  16. Rui-jun Xu (2010) 4-methylanilinium p-toluenesulfonate. Acta Cryst E 66:01794

    Article  Google Scholar 

  17. Aravinth K, Anandha Babu G, Ramasamy P (2012) Growth of <201> 8-hydroxyquinoline organic crystal by Czochralski method and its characterizations. J Therm Anal Calorim 110:1333–1339

    Article  CAS  Google Scholar 

  18. Thirumurugan R, Babu B, Anitha K, Chandrasekaran J (2015) Investigation on growth, structure and characterization of succinate salt of 8-hydroxyquinoline: an organic NLO crystal. Spectrochim Acta A Mol Biomol Spectrosc 140:44–53

    Article  CAS  PubMed  Google Scholar 

  19. Sudharsana N, Krishnakumar V, Nagalakshmi R (2014) Synthesis, experimental and theoretical studies of 8-hydroxyquinolinium 3,5-dinitrobenzoate single crystal. J Cryst Growth 398:45–57

    Article  CAS  Google Scholar 

  20. Peramaiyan G, Pandi P, Vijayan N, Bhagavannarayana G, Mohan Kumar R (2013) Crystal growth, structural, thermal, optical and laser damage threshold studies of 8-hydroxyquinolinium hydrogen maleate single crystals. J Cryst Growth 375:6–9

    Article  CAS  Google Scholar 

  21. Goel S, Yadav H, Sinha N, Singh B, Bdikin I, Kumar B (2018) X-ray, dielectric, piezoelectric and optical analyses of a new nonlinear optical 8-hydroxyquinolinium hydrogen squarate crystal. Acta Cryst B 74:1–12

    Article  Google Scholar 

  22. Burtman V, Teplitsky A, Zelichenok A (2000) Quinolinium derived acentric single crystals. Tetrahedron Lett 41:5397–5402

    Article  CAS  Google Scholar 

  23. Zelichenok A, Burtman V, Zenou N, Yitzchaik S (1999) Quinolinium-derived acentric crystals for second-order NLO applications with transparency in the blue. J Phys Chem B 103:8702–8705

    Article  CAS  Google Scholar 

  24. Zhao G (2017) Crystal structure of (8-hydroxy-5-nitroquinolinium) perchlorate – 8-hydroxy-5-nitroquinoline (1/1) C18H13ClN4O10. Z Kristallogr 1–3

  25. Selvakumar E, Anandha babu G, Ramasamy P, Rajnikant, Murugesan V, Chandramohan A (2014) Synthesis, growth and spectroscopic investigation of an organic molecular charge transfer crystal: 8-hydroxy quinolinium 4-nitrobenzoate 4-nitrobenzoic acid. Spectrochim Acta A 117:259–263

    Article  CAS  Google Scholar 

  26. Mohana J, Divya M, Bharathi G, Ahila G, Chakkaravarthi AG (2015) Crystal structure of quinolinium 2-carboxy-6-nitrobenzoate monohydrate. Acta Cryst E 71:0270–0271

    Article  Google Scholar 

  27. Kobayashi H, Marumo F, Saito Y (1971) The crystal structure of quinolinium bis(7,7,8,8-tetracyanoquinodimethanide) Q+(TCNQ)2-. Acta Cryst B 27:373–378

    Article  CAS  Google Scholar 

  28. Jebamony JR, Thomas MP (1998) 8-hydroxyquinolinium-salicylate-salicylic acid (1/1/1) complex. C9H8NO+.C7H5O3-.-C7H6O3. Acta Cryst C 54539–540

  29. Barczynski P, Komasa A, Ratajczak-Sitarz M, Katrusiak A, Brzezinski B (2006) Molecular structure of 8-hydroxy-1-methylquinolinium iodide hydrate in crystal and solution. J Mol Struct 791:106–110

    Article  CAS  Google Scholar 

  30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT

  31. Schlegel B (1982) Optimization of equilibrium geometries and transition structures. J Comput Chem 3214–218

  32. Dennington R, Keith T, Millam J (2009) Gauss View, Version 5. Semichem Inc., Shawnee Mission KS

    Google Scholar 

  33. Wolff SK, Grimwood DJ, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA (2012) CrystalExplorer (Version 3.1), University of Western Australia

  34. Kaminsky W (2005) WinXMorph: a computer program to draw crystal morphology, growth sectors and cross sections with export files in VRML V2.0 utf8-virtual reality format. J Appl Cryst 38:566–567

    Article  CAS  Google Scholar 

  35. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez Monge L, Taylor R, van de Streek J, Wood PA (2008) Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470

    Article  CAS  Google Scholar 

  36. Kubelka P, Munk F (1931) Ein beitrag zur optik der farbanstriche. Zeitschrift fur technische Physik 12:593–601

    Google Scholar 

  37. Zyss J, Oudar JL (1982) Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one- or two-dimensional units. Phy Rew A 26:2028–2048

    Article  CAS  Google Scholar 

  38. Garito A, Shi RF, Marvin Wu (1994) Nonlinear optics of organic and polymer materials. Phys Today 47:51–57

    Article  CAS  Google Scholar 

  39. Kurtz SK, Perry TT (1968) A powder technique for the evaluation of nonlinear optical materials. J Appl Phys 39:3798–3813

    Article  CAS  Google Scholar 

  40. Yatsenko AV, Paseshnichenko KA, Chernysheva VV, Schenk H (2002) Powder diffraction study of the hydrogen bonds in nitroxoline and its hydrochloride. Acta Cryst C 58:019–021

    Article  Google Scholar 

  41. Arora SK, Sundaralingam M (1971) The crystal and molecular structure of 4-methyl sulfonic acid (p-toluenesulfonic acid) monohydrate, C7H8SO3.H3O+, an oxonium salt. Acta Cryst B 27:1293–1298

    Article  CAS  Google Scholar 

  42. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44:129–138

    Article  CAS  Google Scholar 

  43. Spackman MA, McKinnon JJ (2002) Finger printing intermolecular interactions in molecular crystals. CrystEngComm 4:378–392

    Article  CAS  Google Scholar 

  44. Jauhar ROMU, Murugakoothan P (2017) Optimization, frontier molecular orbitals and dielectric studies on 2, 6 Diaminopyridinium Tosylate single crystals. AIP Conf Proc 1832:100005

    Article  Google Scholar 

Download references

Acknowledgements

Author SS is grateful to the CSIR Emeritus Scientist Scheme for the award of the SRF.

Funding

The Council of Scientific and Industrial Research, New Delhi, provided financial support through research grant No. 21 (1024)/16/EMR-II.

Author information

Authors and Affiliations

Authors

Contributions

S S: data curation, investigation, visualization, validation, writing, original draft. K P: data curation, investigation; SP M: review, editing, and supervision. The final version of the manuscript submitted was approved by all the authors.

Corresponding author

Correspondence to Subbiah Meenakshisundaram.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11224_2023_2123_MOESM1_ESM.docx

Supplementary file1 CCDC 1871548 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/datarequest/cif. (DOCX 2997 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivaraman, S., Markkandan, R., Pandiarajan, K. et al. Hydrogen-bonded structure and optical nonlinearities in the proton-transfer complex of 8-hydroxy-5-nitroquinoline with ρ-toluenesulfonic acid. Struct Chem 34, 1801–1815 (2023). https://doi.org/10.1007/s11224-023-02123-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-023-02123-1

Keywords

Navigation